Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Technological Profile of Lipases in the Pharmaceutical Industry

Author(s): Gabrielle Barbosa Pinto, Flávia Maria Lins Mendes and Adelaide Maria de Souza Antunes*

Volume 17, Issue 6, 2020

Page: [701 - 716] Pages: 16

DOI: 10.2174/1570193X16666190913181530

Price: $65

conference banner
Abstract

In recent decades, enzymes have been the target of considerable research, development, and innovation. This paper presents an up-to-date overview of the technological application of lipases in the pharmaceutical industry. Lipases have been used in a variety of ways in the pharmaceutical industry, both for obtaining bioactive molecules to overcome limitations in the formulation of medicines and in drug design. This is possible from alternative technologies, such as immobilization and the use of non-aqueous solvents that allow the use of lipases in commercial-scale processes. In addition, other technologies have provided the emergence of differentiated and more specific lipases in order to meet the perspectives of industrial processes. The research indicates that the following years should be promising for the application of lipase in the industrial biocatalysis and in drug design.

Keywords: Biochemistry, drugs, enzymatic catalysts, hydrolases, lipase, pharmaceutical industry.

Graphical Abstract

[1]
Françoso, M.S.; Strachman, E. The pharmaceutical industry in Brazil and India: a comparative study. J. Econ., 2013, 39(37), 91-112.
[2]
Hanson, J.R. The microbiological transformation of diterpenoids. Nat. Prod. Rep., 1992, 9(2), 139-151.
[http://dx.doi.org/10.1039/np9920900139] [PMID: 1620494]
[3]
Theil, F. Enantioselective Lipase-Catalyzed Transesterifications in Organic Solvents. Chem. Rev., 1995, 95, 2203.
[http://dx.doi.org/10.1021/cr00038a017]
[4]
Stecher, H.; Faber, K. Biocatalytic deracemization techniques: Dynamic resolutions and stereoinversions. Synthesis, 1997, 1, 1-16.
[http://dx.doi.org/10.1055/s-1997-1515]
[5]
Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chem. Rev., 1992, 92(5), 1071-1140.
[http://dx.doi.org/10.1021/cr00013a016]
[6]
Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol., 2002, 13(4), 390-397.
[http://dx.doi.org/10.1016/S0958-1669(02)00341-5] [PMID: 12323363]
[7]
Yuan, C.; Xu, C.; Zhang, Y. Enzimatic synthesis of optically active 1- and 2-aminoalkanephosphonates. Tetrahedron, 2003, 59(32), 6095-6102.
[http://dx.doi.org/10.1016/S0040-4020(03)00995-5]
[8]
Leal, M.C.M.R.; Cammarota, M.C.; Freire, D.M.G.; Sant’anna, J.G.L. Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters. Braz. J. Chem. Eng., 2002, 19(2), 175-180.
[http://dx.doi.org/10.1590/S0104-66322002000200013]
[9]
Wakabayashi, H.; Wakabayashi, M.; Eisenreich, W.; Engel, K.H. Stereoselectivity of the beta-lyase-catalyzed cleavage of S-cysteine conju-gates of pulegone. Eur. Food Res. Technol., 2002, 215(4), 287-292.
[http://dx.doi.org/10.1007/s00217-002-0576-0]
[10]
Pollard, D.J.; Woodley, J.M. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol., 2007, 25(2), 66-73.
[http://dx.doi.org/10.1016/j.tibtech.2006.12.005] [PMID: 17184862]
[11]
Loughlin, W.A. Biotransformations in organic synthesis. Bioresour. Technol., 2000, 74(1), 49-62.
[http://dx.doi.org/10.1016/S0960-8524(99)00145-5]
[12]
Patel, R.N. Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals. Enzyme Microb. Technol., 2002, 31(6), 804-826.
[http://dx.doi.org/10.1016/S0141-0229(02)00186-2]
[13]
Lacerda, P.S.B.; Ribeiro, J.B.; Leite, S.G.F.; Ferrara, M.A.; Coelho, R.B.; Bon, E.P.S. Microbial reduction of ethyl 2-oxo-4-phenylbutyrate. Searching for R-enantioselectivity. New access to the enalapril like ACE inhibitors. Tetrahedron Asymmetry, 2006, 17(8), 1186-1188.
[http://dx.doi.org/10.1016/j.tetasy.2006.04.008]
[14]
Kumar, A.; Singh, S. Directed evolution: Tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol., 2013, 33(4), 365-378.
[http://dx.doi.org/10.3109/07388551.2012.716810] [PMID: 22985113]
[15]
Tsutsumi, K. Lipoprotein lipase and atherosclerosis. Curr. Vasc. Pharmacol., 2003, 1(1), 11-17.
[http://dx.doi.org/10.2174/1570161033386673] [PMID: 15320848]
[16]
Byrne, M.F.; Mitchell, R.M.; Stiffler, H.; Jowell, P.S.; Branch, M.S.; Pappas, T.N. Extensive investigation of patients with mild elevations of se-rum amylase and/or lipase is low yield. Can. J. Gastroenterol., 2002, 16(12), 849-54.
[17]
Pertwee, R.G. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc. Nutr. Soc., 2014, 73(1), 96-105.
[http://dx.doi.org/10.1017/S0029665113003649] [PMID: 24135210]
[18]
Kuhn, R.J.; Gelrud, A.; Munck, A.; Caras, S. CREON (pancrelipase delayed-release capsules) for the treatment of exocrine pancreatic insufficiency. Adv. Ther., 2010, 27(12), 895-916.
[http://dx.doi.org/10.1007/s12325-010-0085-7] [PMID: 21086085]
[19]
Baratta, F.; Pastori, D.; Tozzi, G.; D’Erasmo, L.; Di Costanzo, A.; Arca, M.; Ettorre, E.; Ginanni Corradini, S.; Violi, F.; Angelico, F.; Del Ben, M. Lysosomal acid lipase activity and liver fibrosis in the clinical continuum of non-alcoholic fatty liver disease. Liver Int., 2019, 39(12), 2301-2308.
[http://dx.doi.org/10.1111/liv.14206] [PMID: 31392821]
[20]
Taskin, O.C.; Adsay, V. Lipase hypersecretion syndrome: A distinct form of paraneoplastic syndrome specific to pancreatic acinar carcinomas. Semin. Diagn. Pathol., 2019, 36(4), 240-245.
[http://dx.doi.org/10.1053/j.semdp.2019.07.001] [PMID: 31300257]
[21]
Cehreli, R.; Yavuzsen, T.; Ates, H.; Akman, T.; Ellidokuz, H.; Oztop, I. Can inflammatory and nutritional serum markers predict chemotherapy outcomes and survival in advanced stage nonsmall cell lung cancer patients? BioMed Res. Int., 2019. 20191648072
[http://dx.doi.org/10.1155/2019/1648072] [PMID: 30941358]
[22]
Wierzbicki, A.S.; Viljoen, A. Alipogene tiparvovec: Gene therapy for lipoprotein lipase deficiency. Expert Opin. Biol. Ther., 2013, 13(1), 7-10.
[http://dx.doi.org/10.1517/14712598.2013.738663] [PMID: 23126631]
[23]
Al-Bustan, S.A.; Al-Serri, A.; Alnaqeeb, M.A.; Annice, B.G.; Mojiminiyi, O. Genetic association of LPL rs1121923 and rs258 with plasma TG and VLDL levels. Sci. Rep., 2019, 9(1), 5572.
[http://dx.doi.org/10.1038/s41598-019-42021-3] [PMID: 30944368]
[24]
Bilous, N.; Abramenko, I.; Chumak, A.; Dyagil, I.; Martina, Z. Analysis of LPL gene expression in patients with chronic lymphocytic leukemia. Exp. Oncol., 2019, 41(1), 39-45.
[http://dx.doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-1. 12391] [PMID: 30932419]
[25]
Herrera-López, E.J. Lipase and phospholipase biosensors: A review. Methods Mol. Biol., 2012, 861, 525-543.
[http://dx.doi.org/10.1007/978-1-61779-600-5_30] [PMID: 22426738]
[26]
Pohanka, M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 2019, 24(3) E616
[http://dx.doi.org/10.3390/molecules24030616] [PMID: 30744203]
[27]
Xu, T.; Chi, B.; Chu, M.; Zhang, Q.; Zhan, S.; Shi, R.; Xu, H.; Mao, C. Hemocompatible ɛ-polylysine-heparin microparticles: A platform for detecting triglycerides in whole blood. Biosens. Bioelectron., 2018, 99(99), 571-577.
[http://dx.doi.org/10.1016/j.bios.2017.08.030] [PMID: 28826001]
[28]
Giuseppe, M.; Luigia, M.; Elena, P.; Yan, F.; Luigi, M. Enzyme promiscuity in the hormone-sensitive lipase family of proteins. Protein Pept. Lett., 2012, 19(2), 144-154.
[http://dx.doi.org/10.2174/092986612799080400] [PMID: 21933124]
[29]
Budnik, L.T.; Scheer, E.; Burge, P.S.; Baur, X. Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: Cross-sectional study. Occup. Environ. Med., 2017, 74(1), 39-45.
[http://dx.doi.org/10.1136/oemed-2015-103442] [PMID: 27655774]
[30]
Freitas, L.; Well, T.; Perez, V.H.; Castro, H.F. Monoglycerides: Enzymatic production and some applications. Quim. Nova, 2008, 31, 1514-1521.
[http://dx.doi.org/10.1590/S0100-40422008000600042]
[31]
Polat, T.; Linhardt, R.J. Syntheses and applications of sucrosebased esters. J. Surfactants Deterg., 2001, 4, 415-421.
[http://dx.doi.org/10.1007/s11743-001-0196-y]
[32]
Vilchèze, C.; Wang, F.; Arai, M.; Hazbón, M.H.; Colangeli, R.; Kremer, L.; Weisbrod, T.R.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med., 2006, 12(9), 1027-1029.
[http://dx.doi.org/10.1038/nm1466] [PMID: 16906155]
[33]
Yadav, G.D.; Joshi, S.S.; Lathi, P.S. Enzymatic synthesis of isoniazid in non-aqueous medium. Enzyme Microb. Technol., 2005, 36, 217-222.
[http://dx.doi.org/10.1016/j.enzmictec.2004.06.008]
[34]
Gröger, H. Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: A further example for the diversity of bio-catalysis. Adv. Synth. Catal., 2001, 343, 547-588.
[http://dx.doi.org/10.1002/1615-4169(200108)343:6/7<547::AIDADSC547>3.0.CO;2-A]
[35]
Campbell, R.F.; Fitzpatrick, K.; Inghardt, T.; Karlsson, O.; Nilsson, K.; Reilly, J.E.; Yet, L. Enzymatic resolution of substituted mandelic acids. Tetrahedron Lett., 2003, 44, 5477-5481.
[http://dx.doi.org/10.1016/S0040-4039(03)01270-X]
[36]
Wang, P-Y.; Tsai, S-W. Hydrolytic resolution of (R,S)-ethyl mandelate in biphasic media via Klebsiella oxytoca hydrolase. Enzyme Microb. Technol., 2005, 37, 266-271.
[http://dx.doi.org/10.1016/j.enzmictec.2005.03.015]
[37]
Yadav, G.D.; Sivakumar, P. Enzyme-catalyzed optical resolution of mandelic acid via (R,S)-methyl mandelate in non-aqueous media. Biochem. Eng. J., 2004, 19, 101-107.
[http://dx.doi.org/10.1016/j.bej.2003.12.004]
[38]
Hansen, M.M.; Borders, S.S.K.; Clayton, M.T.; Heath, P.C.; Kolis, S.P.; Larsen, S.D.; Linder, R.J.; Reutzel-Edens, S.M.; Smith, J.C.; Tameze, S.L.; Ward, J.A.; Weigel, L.O. Development of a practical synthesis of an aminoindanol-derived M1 agonist. Org. Process Res. Dev., 2009, 13, 198-208.
[http://dx.doi.org/10.1021/op800243q]
[39]
Schramm, H.; Christoffers, J. Synthesis, resolution and absolute configuration of 4-amino-3-phenylpiperidine. Tetrahedron Asymmetry, 2009, 20, 2724-2727.
[http://dx.doi.org/10.1016/j.tetasy.2009.10.019]
[40]
Miyazawa, T.; Kurita, S.; Ueji, S.; Yamada, T. Resolution of mandelic acids by lipase-catalyzed transesterifications in organic media. Bio-cat. Biotrans., 2000, 17, 459-473.
[http://dx.doi.org/10.3109/10242420009003636]
[41]
Ebert, C.; Ferluga, G.; Gardossi, L.; Gianferrara, T.; Linda, P. Improved lipase-mediated resolution of mandelic acid esters by multivariate investigation of experimental factors. Tetrahedron Asymmetry, 1992, 3, 903-912.
[http://dx.doi.org/10.1016/S0957-4166(00)82188-6]
[42]
Castro, H.F.; Anderson, W.A. Fine chemicals by biotransformations using lipases. Quim. Nova, 1995, 18(6), 544-554.
[43]
Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chem. Rev., 1990, 92, 1071.
[http://dx.doi.org/10.1021/cr00013a016]
[44]
Pandey, A.; Benjanmin, S.; Soccol, C. R.; Nigan, P.; Krieger, N.; Soccol, V. T. The realm of microbial lipases in biotechnology. Appl. Biotechnol. Biochem., 1999, 29, 119-131.
[45]
Cernia, E.; Palocci, C.; Soro, S. The role of the reaction medium in lipase-catalyzed esterifications and transesterefications. Chem. Phys. Lipids, 1998, 93, 157-168.
[http://dx.doi.org/10.1016/S0009-3084(98)00040-1]
[46]
Berglund, P. Controlling lipase enantioselectivity for organic synthesis. Biomol. Eng., 2001, 18(1), 13-22.
[http://dx.doi.org/10.1016/S1389-0344(01)00081-8] [PMID: 11429309]
[47]
Kamal, A.; Azhar, A.M.; Krishnaji, T.; Malik, M.S.; Azeeza, S. Approaches based on enzyme mediated kinetic to dynamic kinetic resolutions: A versatile route for chiral intermediates. Coord. Chem. Rev., 2008, 252, 569.
[http://dx.doi.org/10.1016/j.ccr.2007.12.010]
[48]
Reetz, M.T. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol., 2002, 6(2), 145-150.
[http://dx.doi.org/10.1016/S1367-5931(02)00297-1] [PMID: 12038997]
[49]
Schnell, B.; Faber, K.; Kroutil, W. Enzymatic racemization and its application to synthetic biotransformations. Adv. Synth. Catal., 2003, 345, 653-666.
[http://dx.doi.org/10.1002/adsc.200303009]
[50]
Azerad, R.; Buisson, D. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes. Curr. Opin. Biotechnol., 2000, 11(6), 565-571.
[http://dx.doi.org/10.1016/S0958-1669(00)00144-0] [PMID: 11102790]
[51]
Faber, K. Non-sequential processes for the transformation of a racemate into a single stereoisomeric product: proposal for stereochemical classification. Chemistry, 2001, 7(23), 5004-5010.
[http://dx.doi.org/10.1002/1521-3765(20011203)7:23<5004::AIDCHEM5004>3.0.CO;2-X] [PMID: 11775674]
[52]
Benaissi, K.; Poliakoff, M.; Thomas, N.R. Dynamic kinetic resolution of rac-1-phenylethanol in supercritical carbon dioxide. Green Chem., 2009, 11, 617-621.
[http://dx.doi.org/10.1039/b822349a]
[53]
Dias, F.R.F.; Ferreira, V.F.; Cunha, A.C. An overview of the different types of catalysis in organic synthesis. Rev. Virtual Quim., 2012, 4(6), 840-871.
[http://dx.doi.org/10.5935/1984-6835.20120060]
[54]
Barreiro, E.J.; Ferreira, V.F.; Costa, P.R.R. Pure enantiomeric substances: the question of chiral drugs. Quim. Nova, 1997, 20, 647.
[http://dx.doi.org/10.1590/S0100-40421997000600014]
[55]
Carvalho, P.O.; Calafatti, S.A.; Marassi, M.; Da Silva, D.M.; Contesini, F.J.; Bizaco, R.; Macedo, G.A. Potential of enantioselective biocatalysis by microbial lipases. Quim. Nova, 2005, 28, 614.
[http://dx.doi.org/10.1590/S0100-40422005000400012]
[56]
De Crescenzo, G.; Ducret, A.; Trani, M.; Lortie, R. Enantioselective esterification of racemic ketoprofen in non-aqueous solvent under reduced pressure. J. Mol. Catal., B Enzym., 2000, 9, 49-56.
[http://dx.doi.org/10.1016/S1381-1177(99)00083-1]
[57]
Sakaki, K.; Giorno, L.; Drioli, E. Lipase catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactor. J. Membr. Sci., 2001, 184, 27-38.
[http://dx.doi.org/10.1016/S0376-7388(00)00600-1]
[58]
Sundholm, O.; Kanerva, T. Enantioselectivity of Pseudomonas cepacia lipase for the acetylation of 2-hidroxy carboxylic acid esters. Models Chem., 1998, 135, 625-640.
[59]
Cheong, C.S.; Im, D. S.; Kim, J.; Kim, I. O. Lipase-catalysed resolution of primary alcohol containing quaternary chiral carbon. Biotechnol. Lett., 1996, 18, 1419-1422.
[http://dx.doi.org/10.1007/BF00129346]
[60]
Evans, C.T.; Roberts, S.M.; Shoberu, K.A.; Sutherland, A.G. Potential use of carbocylic nucleosides for the treatment of AIDS: Chemo-enzymatic syntheses of the enantiomers of carbovir. J. Chem. Soc. Perkin Trans., 1992, 1, 589-592.
[http://dx.doi.org/10.1039/p19920000589]
[61]
Busto, E.; Gotor-Fernández, V.; Gotor, V. Asymmetric chemoenzymatic synthesis of ramatroban using lipases and oxidoreductases. J. Org. Chem., 2012, 77(10), 4842-4848.
[http://dx.doi.org/10.1021/jo300552v] [PMID: 22515546]
[62]
Homann, M.J.; Vail, R.; Morgan, B.; Sabesan, V.; Levy, C.; Dodds, D.R.; Zaks, A. Enzymatic hydrolysis of a prochiral 3-substituted glu-tarate ester, na intermediate in the synthesis of an NK1/NK2 dual antagonist. Adv. Synth. Catal., 2001, 343(6–7), 744-749.
[http://dx.doi.org/10.1002/1615-4169(200108)343:6/7<744::AIDADSC744>3.0.CO;2-E]
[63]
Parker, W.L.; Hanson, R.L.; Goldberg, S.L.; Tully, T.P.E. Goswami, A. Preparation of (S)-1-Cyclopropyl-2-methoxyethanamine by a Chemoenzymatic route using leucine dehydrogenase. Org. Process Res. Dev., 2012, 16, 464-469.
[http://dx.doi.org/10.1021/op2003562]
[64]
Borsody, M.K.; Weiss, J.M. Influence of corticotropin-releasing hormone on electrophysiological activity of locus coeruleus neurons. Brain Res., 1996, 724(2), 149-168.
[http://dx.doi.org/10.1016/0006-8993(96)00199-0] [PMID: 8828564]
[65]
Kawano, S.; Hasegawa, J.; Yasohara, Y. Efficient preparation of (R)-3-hydroxypentanenitrile with high enantiomeric excess by enzymatic reduction with subsequent enhancement of the optical purity by lipase-catalyzed ester hydrolysis. Biosci. Biotechnol. Biochem., 2012, 76(9), 1796-1798.
[http://dx.doi.org/10.1271/bbb.120331] [PMID: 22972335]
[66]
Kapoor, M.; Anand, N.; Ahmad, K.; Koul, S.; Chimni, S.S.; Taneja, S.C.; Qazi, G.N. Synthesis of β-adrenergic blockers (R)-(-)-nifenalol and (S)-(+)-sotalol via a highly efficient resolution of a bromohydrin precursor. Tetrahedron Asymmetry, 2005, 16(3), 717-725.
[http://dx.doi.org/10.1016/j.tetasy.2004.12.016]
[67]
Ghanem, A.; Aboul-Enein, H.Y. Application of lipases in kinetic resolution of racemates. Chirality, 2005, 17(1), 1-15.
[http://dx.doi.org/10.1002/chir.20089] [PMID: 15515046]
[68]
Sasaki, K.; Giorno, L.; Drioli, E. Lipase-catalyzed resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membr. Sci., 2001, 184, 27-38.
[http://dx.doi.org/10.1016/S0376-7388(00)00600-1]
[69]
García-Urdiales, E.; Alfonso, I.; Gotor, V. Update 1 of: Enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev., 2011, 111(5), PR110-PR180.
[http://dx.doi.org/10.1021/cr100330u] [PMID: 21526766]
[70]
Ghosh, A.K.; Sarkar, A. Enantioselective syntheses of (–)-alloyohimbane and (–)-yohimbane by an eficiente enzymatic desymmetrization process. Eur. J. Org. Chem., 2016, 6001-6009.
[http://dx.doi.org/10.1002/ejoc.201601171]
[71]
Hinze, J.; Süss, P.; Strohmaier, S.; Bornscheuer, U.T.; Wardenga, R.; Von Langermann, J. Recombinant pig liver esterasecatalyzed synthesis of (1S,4R)-4-hydroxy-2-cyclopentenyl acetate combined with subsequent enantioselective crystallization. Org. Process Res. Dev., 2016, 20, 1258-1264.
[http://dx.doi.org/10.1021/acs.oprd.6b00093]
[72]
Moni, L.; Banfi, L.; Basso, A.; Carcone, L.; Rasparini, M.; Riva, R. Ugi and Passerini reactions of biocatalytically derived chiral aldehydes: Application to the synthesis of bicyclic pyrrolidines and of antiviral agent telaprevir. J. Org. Chem., 2015, 80(7), 3411-3428.
[http://dx.doi.org/10.1021/jo502829j] [PMID: 25801330]
[73]
Khong, D.T.; Pamarthy, V.S.; Gallagher, T.; Judeh, Z.M.A. Chemoenzymatic synthesis of chiral 1-benzyl-5-(hydroxymethyl)-2-piperidone enabled by lipase AK-mediated desymmetrization of prochiral 1,3-diol and its diacetate. Eur. J. Org. Chem., 2016, 3084-3089.
[http://dx.doi.org/10.1002/ejoc.201600262]
[74]
Lindhagen, M.; Klingstedt, T.; Andersen, S.M.; Mulholland, K.R.; Tinkler, L.; Mcpheators, G.; Chubb, R. Development of a chemoen-zymatic route to (R)-allyl-(3-amino-2-(2-methylbenzyl) propyl)carbamate. Org. Process Res. Dev., 2016, 20, 65-69.
[http://dx.doi.org/10.1021/acs.oprd.5b00326]
[75]
Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. Engl., 2004, 43(7), 788-824.
[http://dx.doi.org/10.1002/anie.200300599] [PMID: 14767950]
[76]
Koszelewski, D.; Tauber, K.; Faber, K.; Kroutil, W. ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol., 2010, 28(6), 324-332.
[http://dx.doi.org/10.1016/j.tibtech.2010.03.003] [PMID: 20430457]
[77]
Hieber, G.; Ditrich, K. Introducing chipros: Biocatalytic production of chiral intermediates on a commercial scale. Chim. Oggi, 2001, 19(6), 16-20.
[78]
Irimescu, R.; Kato, K. Enzym, investigation of ionic liquids as reaction media for enzymatic enantioselective acylation of amines. J. Mol. Catal., B Enzym., 2004, 30, 189-194.
[http://dx.doi.org/10.1016/j.molcatb.2004.05.003]
[79]
Paetzold, J.; Bäckvall, J.E. Chemoenzymatic dynamic kinetic resolution of primary amines. J. Am. Chem. Soc., 2005, 127(50), 17620-17621.
[http://dx.doi.org/10.1021/ja056306t] [PMID: 16351088]
[80]
Nechab, M.; Azzi, N.; Vanthuyne, N.; Bertrand, M.; Gastaldi, S.; Gil, G. Highly selective enzymatic kinetic resolution of primary amines at 80 degrees C: A comparative study of carboxylic acids and their ethyl esters as acyl donors. J. Org. Chem., 2007, 72(18), 6918-6923.
[http://dx.doi.org/10.1021/jo071069t] [PMID: 17676806]
[81]
Campos, F.; Bosch, M.; Guerrero, A. An efficient enantioselective synthesis of (r,r)-formoterol, a potent bronchodilator, using lipases. Tetrahedron Asymmetry, 2000, 11(13), 2705-2717.
[http://dx.doi.org/10.1016/S0957-4166(00)00238-X]
[82]
González-Sabín, J.; Gotor, V.; Rebolledo, F. CAL-B-catalyzed resolution of some pharmacologically interesting β–substituted isopropylamines. Tetrahedron Asymmetry, 2002, 13, 1315.
[http://dx.doi.org/10.1016/S0957-4166(02)00336-1]
[83]
Clifton, G.G.; Poland, M.; Cook, M.E.; Wallin, J.D. The effects of single dose dilevalol treatement on blood pressure and renal function of normotensive male volunteers. Curr. Ther. Res. Clin. Exp., 1988, 44, 86-83.
[84]
Corbett, J.W.; Rauckhorst, M.R.; Qian, F.; Hoffman, R.L.; Knauer, C.S.; Fitzgerald, L.W. Heteroatom-linked indanylpyrazines are corticotropin releasing factor type-1 receptor antagonists. Bioorg. Med. Chem. Lett., 2007, 17(22), 6250-6256.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.008] [PMID: 17888659]
[85]
Thalén, L.K.; Zhao, D.; Sortais, J.B.; Paetzold, J.; Hoben, C.; Bäckvall, J.E. A chemoenzymatic approach to enantiomerically pure amines using dynamic kinetic resolution: Application to the synthesis of norsertraline. Chemistry, 2009, 15(14), 3403-3410.
[http://dx.doi.org/10.1002/chem.200802303] [PMID: 19222068]
[86]
Batwal, R.U.; Argade, N.P. Chemoenzymatic access to (+)-Artabotriol and its application in collective synthesis of (+)-grandiamide D, (–)-tulipalin B, (+) -spirathundiol, and (+)-artabotriolcaffeate. Synthesis, 2016, 48, 2130-2136.
[http://dx.doi.org/10.1055/s-0035-1561588]
[87]
Lund, I.T.; Bøckmann, P.L.; Jacobsen, E.E. Highly enantioselective CALB-catalyzed kinetic resolution of building blocks for b-blocker Atenolol. Tetrahedron, 2016, 72, 7288-7292.
[http://dx.doi.org/10.1016/j.tet.2016.02.018]
[88]
Lee, J.; Oh, Y.; Choi, Y.; Choi, E.; Kim, K.; Park, J.; Kim, M.-J. Dynamic kinetic resolution of diarylmethanols with an activated lipoprotein lipase. ACS Catal., 2015, 5, 683-689.
[http://dx.doi.org/10.1021/cs501629m]
[89]
Ramesh, P.; Harini, T.; Fadnavis, N.W. Efficient resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate with soluble Candida antarctica lipase B (CAL B). Org. Process Res. Dev., 2015, 19, 296-301.
[http://dx.doi.org/10.1021/op5003424]
[90]
Gao, S.; Zhu, S.; Huang, R.; Lu, Y.; Zheng, G. Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst. Bioorg. Med. Chem. Lett., 2015, 25(18), 3878-3881.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.054] [PMID: 26235952]
[91]
Galla, Z.; Forró, E.; Fülöp, F. Enhanced enzymatic synthesis of the enantiopure intermediate for the blockbuster drug intermediate abacavir through a two-step enzymatic cascade reaction. Tetrahedron Asymmetry, 2016, 27, 729-731.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.019]
[92]
Gótor-Fernández, V.; Busto, E.; Gotor, V. Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv. Synth. Catal., 2006, 348, 797-812.
[http://dx.doi.org/10.1002/adsc.200606057]
[93]
Castro, H.F.; Mendes, A.A.; Santos, J.C.; Aguiar, C.L. Modification of oils and fats by biotransformation. Quim. Nova, 2004, 27(1), 146-156.
[http://dx.doi.org/10.1590/S0100-40422004000100025]
[94]
Dalla-Vecchia, R.; Nascimento, M.G.; Soldi, V. Synthetic applications of lipases immobilized on polymers. Quim. Nova, 2004, 27(4), 623-630.
[http://dx.doi.org/10.1590/S0100-40422004000400017]
[95]
Martínez-Ruiz, A.; García, H.S.; Saucedo-Castañeda, G.; Favela-Torres, E. Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Appl. Biochem. Biotechnol., 2008, 151(2-3), 393-401.
[http://dx.doi.org/10.1007/s12010-008-8207-2] [PMID: 18392560]
[96]
Merçon, F.; Santánna, G.L.; Nobrega, R. Enzymatic hydrolisis of babassu oil in a membrane bioreactor. J. Am. Oil Chem. Soc., 2000, 77(10), 1043-1045.
[http://dx.doi.org/10.1007/s11746-000-0165-7]
[97]
Lortie, R. Enzyme catalyzed esterification. Biotechnol. Adv., 1997, 15(1), 1-15.
[http://dx.doi.org/10.1016/S0734-9750(96)00046-8] [PMID: 14539376]
[98]
Yahya, A.R.M.; Anderson, W.A.; Moo-Young, M. Ester synthesis in lipase-catalyzed reactions. Enzyme Microb. Technol., 1998, 23, 438-450.
[http://dx.doi.org/10.1016/S0141-0229(98)00065-9]
[99]
Sheldon, R.A.; Lau, R.M.; Sorgedrager, M.J.; Rantwijk, F.; Seddon, K.R. Biocatalysis in ionic liquids. Green Chem., 2002, 4, 147-151.
[http://dx.doi.org/10.1039/b110008b]
[100]
Foresti, M.L.; Pedernera, M.; Bucalá, V.; Ferreira, M.L. Multiple effects of water on solvent-free enzymatic esterifications. Enzyme Microb. Technol., 2007, 41, 62-70.
[http://dx.doi.org/10.1016/j.enzmictec.2006.11.023]
[101]
Chamouleau, F.; Coulon, D.; Girardin, M.; Ghoul, M. J. Mol. Catal., B Enzym., 2001, 11, 949.
[http://dx.doi.org/10.1016/S1381-1177(00)00166-1]
[102]
Güvença, A.; Kapucu, N.; Mehmetoglu, U. The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem., 2002, 38, 379-386.
[http://dx.doi.org/10.1016/S0032-9592(02)00099-7]
[103]
Janssen, G.G.; Haas, M.J. Lipase-catalyzed synthesis of oleic acid esters of polyethylene glycol 400. Biotechnol. Lett., 1994, 16(2), 163-168.
[http://dx.doi.org/10.1007/BF01021665]
[104]
Hazarika, S.; Goswami, P.; Dutta, N.N.; Hazarika, A.K. Ethyl oleate synthesis by porcine pancreatic lipase in organic solvents. Chem. Eng. J., 2002, 85, 61-68.
[http://dx.doi.org/10.1016/S1385-8947(01)00144-9]
[105]
Szűts, A.; Szabó-Révész, P. Sucrose esters as natural surfactants in drug delivery systems--a mini-review. Int. J. Pharm., 2012, 433(1-2), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.076] [PMID: 22575672]
[106]
Bornscheuer, U.T. Lipase-catalyzed synthesis of monoacylglycerols. Enzyme Microb. Technol., 1995, 17(7), 578-586.
[http://dx.doi.org/10.1016/0141-0229(94)00096-A]
[107]
Da Silva, M.A.; Medeiros, V.C.; Langone, M.A.P.; Freire, D.M.G. Synthesis of monocaprin catalyzed by lipase. Appl. Biochem. Biotechnol., 2003, 105(108), 757-767.
[http://dx.doi.org/10.1385/ABAB:108:1-3:757] [PMID: 12721413]
[108]
Machado, M.D.; Perez-Pariente, J.; Sastre, E.; Cardoso, D.; Guerene, A.M. Selective synthesis of glycerol monolaurate with zeolitic molecular sieves. Appl. Catal. A Gen., 2000, 203(2), 321-328.
[http://dx.doi.org/10.1016/S0926-860X(00)00493-2]
[109]
Kaewthong, W.; Sirisansaneeyakul, S.; Prasertsan, P. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Process Biochem., 2005, 40(5), 1525-1530.
[http://dx.doi.org/10.1016/j.procbio.2003.12.002]
[110]
Lima, J.R.; Nassu, R.T. Food Substitutes: Characteristics and Applications. Quim. Nova, 1996, 19, 127-134.
[111]
Adamczak, M.; Bornscheuer, U.T.; Bednarski, W. Synthesis of ascorbyloleate by immobilized Candida antartica lipases. Process Biochem., 2005, 40(10), 3177-3180.
[http://dx.doi.org/10.1016/j.procbio.2005.01.016]
[112]
García, R.; García, T.; Martínez, M.; Aracil, J. Kinetic modelling of the synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester by an immobilised lipase. Biochem. Eng. J., 2000, 5(3), 185-190.
[http://dx.doi.org/10.1016/S1369-703X(00)00056-5] [PMID: 10828419]
[113]
Maag, H. Fatty acid derivates: Important surfactants for household, cosmetic and industrial purposes. J. Am. Oil Chem. Soc., 1984, 61(2), 259-267.
[http://dx.doi.org/10.1007/BF02678778]
[114]
Maugard, T.; Legoy, M.D. Enzymatic synthesis of derivatives of vitamin A in organic media. J. Mol. Catal., 2000, 8, 275-280.
[http://dx.doi.org/10.1016/S1381-1177(99)00078-8]
[115]
Soares, F.B.; Souza, J.M.; Dimenstein, M. Evaluation of retinol concentration in Ultra High Temperature (UHT) milk marketed in Natal. Quim. Nova, 2008, 31(20), 268-269.
[http://dx.doi.org/10.1590/S0100-40422008000200014]
[116]
Makita, A.; Nihira, T.; Yamada, Y. Lipase catalyzed synthesis of macrocyclic lactones in organic solvents. Tetrahedron Lett., 1987, 28, 805.
[http://dx.doi.org/10.1016/S0040-4039(01)80995-3]
[117]
Sugai, T.; Ohsawa, S.; Yamada, H.; Ohta, H. Preparation of enantiomerically enriched compounds using enzymes, A synthesis of Japanese beetle pheromone utilizing lipase-catalyzed enantioselective lactonization. Synthesis, 1990, 1112-1114.
[http://dx.doi.org/10.1055/s-1990-27105]
[118]
Longo Júnior, L.S.; Bombonato, F.I.; Ferraz, H.M.C. Methods of preparation of middle ring lactones. Quim. Nova, 2007, 30, 415-424.
[http://dx.doi.org/10.1590/S0100-40422007000200032]
[119]
Matsushima, A.; Kodera, Y.; Hiroto, M. Bioconjugates of proteins and polyethylene glycol: Potent tools in biotechnological processes. J. Mol. Catal., B Enzym., 1996, 2(1), 1-17.
[http://dx.doi.org/10.1016/1381-1177(96)00003-3]
[120]
Jennings, B.H.; Akoh, C.C. Lipase catalysed modification of fish oil to incorporate capric acid. Food Chem., 2001, 72, 273-278.
[http://dx.doi.org/10.1016/S0308-8146(00)00266-1]
[121]
Gandhi, N.N. Applications of lipases. J. Am. Oil Chem. Soc., 1997, 74(6), 621-634.
[http://dx.doi.org/10.1007/s11746-997-0194-x]
[122]
Barros, M.; Fleuri, L.F.; Macedo, G.A. Seed lipases: Sources, applications and properties – a review. Chem. Eng. J., 2010, 27(1), 15-29.
[123]
Carvalho, P.O.; Campos, P.R.B.; Noffs, M.D.; Oliveira, J.G.; Shimizu, M.T.; Silva, D.M. Application of microbial lipases to obtain polyun-saturated fatty acid concentrates. Quim. Nova, 2003, 26(1), 75-80.
[http://dx.doi.org/10.1590/S0100-40422003000100014]
[124]
Innis, S.M. Polyunsaturated fatty acids in human milk: An essential role in infant development. Adv. Exp. Med. Biol., 2004, 554, 27-43.
[http://dx.doi.org/10.1007/978-1-4757-4242-8_5] [PMID: 15384565]
[125]
[126]
Másson, M.; Loftsson, T.; Haraldsson, G.G. Marine lipids for prodrugs, soft compounds and other pharmaceutical applications. Pharmazie, 2000, 55(3), 172-177.
[PMID: 10756535]
[127]
Guallar, E.; Aro, A.; Jiménez, F.J.; Martín-Moreno, J.M.; Salminen, I.; van’t Veer, P.; Kardinaal, A.F.; Gómez-Aracena, J.; Martin, B.C.; Kohlmeier, L.; Kark, J.D.; Mazaev, V.P.; Ringstad, J.; Guillén, J.; Riemersma, R.A.; Huttunen, J.K.; Thamm, M.; Kok, F.J. Omega-3 fatty acids in adipose tissue and risk of myocardial infarction: the EURAMIC study. Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 1111-1118.
[http://dx.doi.org/10.1161/01.ATV.19.4.1111] [PMID: 10195943]
[128]
Mukherjee, K.D. Lipase-catalyzed reactions for modification of fats and other lipids. Biocatalysis, 1990, 3, 277-281.
[http://dx.doi.org/10.3109/10242429008992072]
[129]
Garcia, H.; Storkson, J.; Pariza, M.; Hill, C. Enrichment of butteroil with conjugated linoleic acid via enzymatic interesterification (acidolysis) reactions. Biotechnol. Lett., 1998, 20(4), 393-395.
[http://dx.doi.org/10.1023/A:1017158515921]
[130]
Sehanputri, P.S.; Hill, C.G., Jr Biotechnology for the production of nutraceuticals enriched in conjugated linoleic acid: I. Uniresponse kinetics of the hydrolysis of corn oil by a Pseudomonas sp. lipase immobilized in a hollow fiber reactor. Biotechnol. Bioeng., 1999, 64(5), 568-579.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990905)64:5<568:: AID-BIT7>3.0.CO;2-E] [PMID: 10404237]
[131]
Belarbi, E.H.; Molina, E.; Chisti, Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb. Technol., 2000, 26(7), 516-529.
[http://dx.doi.org/10.1016/S0141-0229(99)00191-X] [PMID: 10771055]
[132]
Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol., 2006, 39(2), 235-251.
[http://dx.doi.org/10.1016/j.enzmictec.2005.10.016]
[133]
Iwasaki, Y.; Yamane, T. Enzymatic synthesis of structured lipids. J. Mol. Catal., B Enzym., 2000, 10, 129-140.
[http://dx.doi.org/10.1016/S1381-1177(00)00120-X]
[134]
Neklyudov, A.D.; Ivankin, A.N. Biochemical processing of fats and oils as a means of obtaining lipid products with improved biologi-cal and physicochemical properties: A review. Appl. Biochem. Microbiol., 2002, 38(5), 399-409.
[http://dx.doi.org/10.1023/A:1019948830882]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy