Mini-Review Article

靶向药物传递的玉米醇溶蛋白偶联和表面修饰设计

卷 21, 期 4, 2020

页: [406 - 415] 页: 10

弟呕挨: 10.2174/1389450120666190913124629

价格: $65

摘要

在文献中已经研究和报道了使用玉米醇溶蛋白来控制药物释放的各种策略,尤其是使用玉米醇溶蛋白缀合物来增强口服生物利用度和靶向递送的工程策略,这引起了最近的研究兴趣。 尽管仍受限制,但制造自组装的纳米颗粒的能力,其中所述纳米颗粒负载有提供潜在基团的官能团的感兴趣分子,可以产生基于玉米醇溶蛋白的结合物,有望作为药物递送的材料。 在当前的审查中,基于各种共轭类型讨论了最近对具有突出特征的玉米醇溶蛋白偶联物的研究。 还总结了玉米醇溶蛋白的化学缀合和鉴定的关键物理化学表征方法。 通过缀合开发基于玉米醇溶蛋白的材料的更多机会将为许多候选药物提供有希望的替代制剂。

关键词: 共轭,玉米蛋白,药物控制释放,自组装纳米颗粒,靶向。

图形摘要

[1]
Tran PHL, Duan W, Lee BJ, Tran TTD. current designs of polymer blends in solid dispersions for improving drug bioavailability. Curr Drug Metab 2018; 19(13): 1111-8.
[http://dx.doi.org/10.2174/1389200219666180628171100] [PMID: 29956619]
[2]
Tran TTD, Tran PHL. perspectives on strategies using swellable polymers in solid dispersions for controlled drug release. Curr Pharm Des 2017; 23(11): 1639-48.
[http://dx.doi.org/10.2174/1381612822666161021152932] [PMID: 27774901]
[3]
Tran PHL, Tran TTD, Park JB, Lee BJ. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78.
[http://dx.doi.org/10.1007/s11095-011-0449-y] [PMID: 21553168]
[4]
Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. J Control Release 2019; 294: 355-71.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.038] [PMID: 30590097]
[5]
Tan YF, Lao LL, Xiong GM, Venkatraman S. Controlled-release nanotherapeutics: State of translation. J Control Release 2018; 284: 39-48.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.014] [PMID: 29902484]
[6]
Wu S, Ahmad Z, Li J-S, Chang M-W. Controlled engineering of highly aligned fibrous dosage form matrices for controlled release. Mater Lett 2018; 232: 134-7.
[http://dx.doi.org/10.1016/j.matlet.2018.08.101]
[7]
Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013; 9(9-10): 1521-32.
[http://dx.doi.org/10.1002/smll.201201390] [PMID: 23019091]
[8]
Pang J, Li Z, Li S, et al. Folate-conjugated zein/Fe3O4 nanocomplexes for the enhancement of cellular uptake and cytotoxicity of gefitinib. J Mater Sci 2018; 53(21): 14907-21.
[http://dx.doi.org/10.1007/s10853-018-2684-7]
[9]
Nguyen TNG, Tran VT, Duan W, Tran PHL, Tran TTD. Nanoprecipitation for Poorly Water-Soluble Drugs. Curr Drug Metab 2017; 18(11): 1000-15.
[http://dx.doi.org/10.2174/1389200218666171004112122] [PMID: 28982324]
[10]
Vo ATN, Luu TD, Nguyen MNU, et al. Sonication-assisted nanoprecipitation in drug delivery. Curr Drug Metab 2017; 18(2): 145-56.
[http://dx.doi.org/10.2174/1389200218666170116103555] [PMID: 28093997]
[11]
Tran PHL, Tran TTD, Vo TV, Lee BJ. Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch Pharm Res 2012; 35(12): 2045-61.
[http://dx.doi.org/10.1007/s12272-012-1203-7] [PMID: 23263800]
[12]
Tran KTM, Vo TV, Duan W, Tran PHL, Tran TTD. Perspectives of engineered marine derived polymers for biomedical nanoparticles. Curr Pharm Des 2016; 22(19): 2844-56.
[http://dx.doi.org/10.2174/1381612822666160217124735] [PMID: 26898745]
[13]
Nguyen KT, Pham MN, Vo TV, Duan W, Tran PH, Tran TT. Strategies of Engineering Nanoparticles for Treating Neurodegenerative Disorders. Curr Drug Metab 2017; 18(9): 786-97.
[http://dx.doi.org/10.2174/1389200218666170125114751] [PMID: 28124594]
[14]
Tietjen GT, Bracaglia LG, Saltzman WM, Pober JS. Focus on Fundamentals: Achieving Effective Nanoparticle Targeting. Trends Mol Med 2018; 24(7): 598-606.
[http://dx.doi.org/10.1016/j.molmed.2018.05.003] [PMID: 29884540]
[15]
Cai J, Fu J, Li R, Zhang F, Ling G, Zhang P. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym 2019; 208: 356-64.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.074] [PMID: 30658811]
[16]
Santos LF, Correia IJ, Silva AS, Mano JF. Biomaterials for drug delivery patches. Eur J Pharm Sci 2018; 118: 49-66.
[http://dx.doi.org/10.1016/j.ejps.2018.03.020] [PMID: 29572160]
[17]
Shah A, Malik MS, Khan GS, et al. Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chem Eng J 2018; 353: 559-83.
[http://dx.doi.org/10.1016/j.cej.2018.07.126]
[18]
Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016; 85: 152-67.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.061] [PMID: 26871891]
[19]
Krukiewicz K, Zak JK. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C 2016; 62: 927-42.
[http://dx.doi.org/10.1016/j.msec.2016.01.063] [PMID: 26952500]
[20]
Wang L, Zhang Y. Heat-induced self-assembly of zein nanoparticles: Fabrication, stabilization and potential application as oral drug delivery. Food Hydrocoll 2019; 90: 403-12.
[http://dx.doi.org/10.1016/j.foodhyd.2018.12.040]
[21]
Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int J Pharm 2017; 522(1-2): 172-97.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.067] [PMID: 28188876]
[22]
Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr Opin Colloid Interface Sci 2014; 19(5): 417-27.
[http://dx.doi.org/10.1016/j.cocis.2014.07.002]
[23]
Dai L, Zhou H, Wei Y, Gao Y, McClements DJ. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocoll 2019; 93: 342-50.
[http://dx.doi.org/10.1016/j.foodhyd.2019.02.041]
[24]
Ezpeleta I, Irache JM, Stainmesse S, et al. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int J Pharm 1996; 131(2): 191-200.
[http://dx.doi.org/10.1016/0378-5173(95)04338-1]
[25]
Li H, Wang D, Liu C, et al. Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin. Food Hydrocoll 2019; 87: 342-51.
[http://dx.doi.org/10.1016/j.foodhyd.2018.08.002]
[26]
Pauluk D, Padilha AK, Khalil NM, Mainardes RM. Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocoll 2019; 94: 411-7.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.042]
[27]
Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release 2014; 189: 108-22.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.036] [PMID: 24993426]
[28]
Lawton JW. Zein: A history of processing and use. Cereal Chem 2002; 79(1): 1-18.
[http://dx.doi.org/10.1094/CCHEM.2002.79.1.1]
[29]
Lucio D, Martínez-Ohárriz MC, Jaras G, et al. Optimization and evaluation of zein nanoparticles to improve the oral delivery of glibenclamide. In vivo study using C. elegans. Eur J Pharm Biopharm 2017; 121: 104-12.
[http://dx.doi.org/10.1016/j.ejpb.2017.09.018] [PMID: 28986295]
[30]
Sun C, Xu C, Mao L, Wang D, Yang J, Gao Y. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem 2017; 228: 656-67.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.001] [PMID: 28317777]
[31]
Liang H, Zhou B, He L, et al. Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Advances 2015; 5(18): 13891-900.
[http://dx.doi.org/10.1039/C4RA14270E]
[32]
Sallam MA, Elzoghby AO. Flutamide-loaded zein nanocapsule hydrogel, a promising dermal delivery system for pilosebaceous unit disorders. AAPS PharmSciTech 2018; 19(5): 2370-82.
[http://dx.doi.org/10.1208/s12249-018-1087-z] [PMID: 29882189]
[33]
Luo Y, Zhang B, Whent M, Yu LL, Wang Q. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf B Biointerfaces 2011; 85(2): 145-52.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.020] [PMID: 21440424]
[34]
Elzoghby AO, El-Lakany SA, Helmy MW, Abu-Serie MM, Elgindy NA. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine (Lond) 2017; 12(24): 2785-805.
[http://dx.doi.org/10.2217/nnm-2017-0247] [PMID: 29094642]
[35]
Wang H, Hao L, Wang P, Chen M, Jiang S, Jiang S. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocoll 2017; 63: 437-46.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.028]
[36]
Lu H, Qiu Y, Wang Q, Li G, Wei Q. Nanocomposites prepared by electrohydrodynamics and their drug release properties. Mater Sci Eng C 2018; 91: 26-35.
[http://dx.doi.org/10.1016/j.msec.2018.05.024] [PMID: 30033254]
[37]
Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crops Prod 2001; 13(3): 171-92.
[http://dx.doi.org/10.1016/S0926-6690(00)00064-9]
[38]
Nguyen MNU, Tran PHL, Tran TTD. A single-layer film coating for colon-targeted oral delivery. Int J Pharm 2019; 559: 402-9.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.066] [PMID: 30738130]
[39]
Nguyen MN-U, Van Vo T, Tran PH-L, Tran TT-D. Zein-based solid dispersion for potential application in targeted delivery. J Pharm Investig 2017; 47(4): 357-64.
[http://dx.doi.org/10.1007/s40005-017-0314-z]
[40]
Han Y-L, Xu Q, Lu Z, Wang J-Y. Cell adhesion on zein films under shear stress field. Colloids Surf B Biointerfaces 2013; 111: 479-85.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.042] [PMID: 23876447]
[41]
Patel A, Hu Y, Tiwari JK, Velikov KP. Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter 2010; 6(24): 6192-9.
[http://dx.doi.org/10.1039/c0sm00800a]
[42]
Rossi L, Seijen ten Hoorn JWM, Melnikov SM, Velikov KP. Colloidal phytosterols: synthesis, characterization and bioaccessibility. Soft Matter 2010; 6(5): 928-36.
[http://dx.doi.org/10.1039/B911371A]
[43]
Velikov KP, Pelan E. Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 2008; 4(10): 1964-80.
[http://dx.doi.org/10.1039/b804863k]
[44]
Kim B-Y, Jeong JH, Park K, Kim J-D. Bioadhesive interaction and hypoglycemic effect of insulin-loaded lectin-microparticle conjugates in oral insulin delivery system. J Control Release 2005; 102(3): 525-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.032] [PMID: 15681076]
[45]
Huang W, Li S, Li Z, Zhu W, Lu S, Jiang Y. Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation. J Mater Sci 2019; 54(11): 8591-601.
[http://dx.doi.org/10.1007/s10853-019-03465-0]
[46]
Wang H, Zhang X, Zhu W, Jiang Y, Zhang Z. Self-assembly of zein-based microcarrier system for colon-targeted oral drug delivery. Ind Eng Chem Res 2018; 57(38): 12689-99.
[http://dx.doi.org/10.1021/acs.iecr.8b02092]
[47]
Liu G, Li S, Huang Y, Wang H, Jiang Y. Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres. Chem Eng Sci 2016; 155: 405-14.
[http://dx.doi.org/10.1016/j.ces.2016.08.029]
[48]
Li S, Li Z, Pang J, et al. Polydopamine-Mediated Carrier with Stabilizing and Self-Antioxidative Properties for Polyphenol Delivery Systems. Ind Eng Chem Res 2018; 57(2): 590-9.
[http://dx.doi.org/10.1021/acs.iecr.7b04070]
[49]
Tran PHL, Duan W, Lee B-J, Tran TTD. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566: 557-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]
[50]
Zhang Y, Cui L, Che X, et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. J Control Release 2015; 206: 206-19.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.030] [PMID: 25828699]
[51]
Wilson CM. Multiple zeins from maize endosperms characterized by reversed-phase high performance liquid chromatography. Plant Physiol 1991; 95(3): 777-86.
[http://dx.doi.org/10.1104/pp.95.3.777] [PMID: 16668053]
[52]
Esen A. A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J Cereal Sci 1987; 5(2): 117-28.
[http://dx.doi.org/10.1016/S0733-5210(87)80015-2]
[53]
Thompson GA, Larkins BA. Structural elements regulating zein gene expression. BioEssays 1989; 10(4): 108-13.
[http://dx.doi.org/10.1002/bies.950100404] [PMID: 2658986]
[54]
Anderson TJ, Lamsal BP. REVIEW: Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chem 2011; 88(2): 159-73.
[http://dx.doi.org/10.1094/CCHEM-06-10-0091]
[55]
Liu Z-P, Zhang Y-Y, Yu D-G, Wu D, Li H-L. Fabrication of sustained-release zein nanoparticles via modified coaxial electrospraying. Chem Eng J 2018; 334: 807-16.
[http://dx.doi.org/10.1016/j.cej.2017.10.098]
[56]
Jayan H, Maria Leena M, Sivakama Sundari SK, Moses JA, Anandharamakrishnan C. Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J Funct Foods 2019; 57: 417-24.
[http://dx.doi.org/10.1016/j.jff.2019.04.007]
[57]
Raza A, Shen N, Li J, Chen Y, Wang J-Y. Formulation of zein based compression coated floating tablets for enhanced gastric retention and tunable drug release. Eur J Pharm Sci 2019; 132: 163-73.
[http://dx.doi.org/10.1016/j.ejps.2019.01.025] [PMID: 30695689]
[58]
Zhang Y, Cui L, Li F, et al. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. Int J Pharm 2016; 513(1-2): 191-210.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.023] [PMID: 27615709]
[59]
Deng L, Li Y, Feng F, Wu D, Zhang H. Encapsulation of allopurinol by glucose cross-linked gelatin/zein nanofibers: Characterization and release behavior. Food Hydrocoll 2019; 94: 574-84.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.004]
[60]
Chen Y, Shu M, Yao X, et al. Effect of zein-based microencapsules on the release and oxidation of loaded limonene. Food Hydrocoll 2018; 84: 330-6.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.049]
[61]
Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm 2011; 404(1-2): 317-23.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.025] [PMID: 21094232]
[62]
Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161(1): 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[63]
Kasaai MR. Zein and zein -based nano-materials for food and nutrition applications: A review. Trends Food Sci Technol 2018; 79: 184-97.
[http://dx.doi.org/10.1016/j.tifs.2018.07.015]
[64]
Kasaai MR. Zein and Zein-Based Nanoparticles for Food Packaging Applications: A Global View. Adv Sci Eng Med 2017; 9(6): 439-44.
[http://dx.doi.org/10.1166/asem.2017.2025]
[65]
Chuacharoen T, Sabliov CM. The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. Lebensm Wiss Technol 2016; 72: 302-9.
[http://dx.doi.org/10.1016/j.lwt.2016.05.006]
[66]
Patel AR, Velikov KP. Zein as a source of functional colloidal nano- and microstructures. Curr Opin Colloid Interface Sci 2014; 19(5): 450-8.
[http://dx.doi.org/10.1016/j.cocis.2014.08.001]
[67]
Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 2015; 220(Pt B): 584-91.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.008] [PMID: 26363300]
[68]
Xu AY, Melton LD, Williams MA, McGillivray DJ. Protein and polysaccharide conjugates as emerging scaffolds for drug delivery systems. Int J Nanotechnol 2017; 14(1-6): 470-80.
[http://dx.doi.org/10.1504/IJNT.2017.082468]
[69]
Takahashi K, Ogata A, Yang W-H, Hattori M. Increased hydrophobicity of carboxymethyl starch film by conjugation with zein. Biosci Biotechnol Biochem 2002; 66(6): 1276-80.
[http://dx.doi.org/10.1271/bbb.66.1276] [PMID: 12162549]
[70]
Gao F-P, Zhang H-Z, Liu L-R, et al. Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydr Polym 2008; 71(4): 606-13.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.008] [PMID: 26048227]
[71]
Mortensen K. Structural properties of self-assembled polymeric aggregates in aqueous solutions. Polym Adv Technol 2001; 12(1-2): 2-22.
[http://dx.doi.org/10.1002/1099-1581(200101/02)12:1/2<2:AID-PAT946>3.0.CO;2-E]
[72]
Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001; 2(4): 1067-70.
[http://dx.doi.org/10.1021/bm015574q] [PMID: 11777374]
[73]
Tran PH-L, Tran TT-D, Vo TV. Polymer conjugate-based nanomaterials for drug delivery. J Nanosci Nanotechnol 2014; 14(1): 815-27.
[http://dx.doi.org/10.1166/jnn.2014.8901] [PMID: 24730300]
[74]
Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[75]
Sabra S, Abdelmoneem M, Abdelwakil M, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des 2017; 23(35): 5213-29.
[PMID: 28552068]
[76]
Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci 2019; 269: 187-202.
[http://dx.doi.org/10.1016/j.cis.2019.04.004] [PMID: 31082545]
[77]
Kumar R, Das S, Mukherjee S, Bhosale RS, Patra CR, Narayan R. Novel tetraphenylethylene diol amphiphile with aggregation-induced emission: self-assembly, cell imaging and tagging property. Mater Sci Eng C 2017; 81: 580-7.
[http://dx.doi.org/10.1016/j.msec.2017.08.051] [PMID: 28888013]
[78]
Walvekar P, Gannimani R, Rambharose S, Mocktar C, Govender T. Fatty acid conjugated pyridinium cationic amphiphiles as antibacterial agents and self-assembling nano carriers. Chem Phys Lipids 2018; 214: 1-10.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.05.001] [PMID: 29730266]
[79]
Chung EJ, Mlinar LB, Sugimoto MJ, Nord K, Roman BB, Tirrell M. In vivo biodistribution and clearance of peptide amphiphile micelles. Nanomedicine (Lond) 2015; 11(2): 479-87.
[http://dx.doi.org/10.1016/j.nano.2014.08.006] [PMID: 25194999]
[80]
Mallick S, Song SJ, Bae Y, Choi JS. Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery. Int J Biol Macromol 2019; 132: 451-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.215] [PMID: 30930268]
[81]
Lee JJ, Kang JA, Ryu Y, et al. Genetically engineered and self-assembled oncolytic protein nanoparticles for targeted cancer therapy. Biomaterials 2017; 120: 22-31.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.014] [PMID: 28024232]
[82]
Kumari M, Purohit MP, Patnaik S, Shukla Y, Kumar P, Gupta KC. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. Eur J Pharm Biopharm 2018; 130: 185-99.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.030] [PMID: 29969665]
[83]
Vafaei SY, Esmaeili M, Amini M, Atyabi F, Ostad SN, Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym 2016; 144: 371-81.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.026] [PMID: 27083829]
[84]
Tran TTD, Tran PHL. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics 2019; 11(7): 325.
[85]
Tran PHL, Duan W, Tran TTD. Conjugation Strategies for Colonic Delivery and its Application in Colorectal Cancer Therapy. Curr Drug Metab 2017; 18(11): 1016-9.
[http://dx.doi.org/10.2174/1389200218666171031150001] [PMID: 29086687]
[86]
Phan NH, Ly TT, Pham MN, et al. A Comparison of Fucoidan Conjugated to Paclitaxel and Curcumin for the Dual Delivery of Cancer Therapeutic Agents. Anticancer Agents Med Chem 2018; 18(9): 1349-55.
[http://dx.doi.org/10.2174/1871520617666171121125845] [PMID: 29173183]
[87]
Liu M, Li Z, Li Y, Chen J, Yuan Q. Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chin Chem Lett 2019; 30(5): 1009-12.
[http://dx.doi.org/10.1016/j.cclet.2018.12.021]
[88]
Podaralla S, Averineni R, Alqahtani M, Perumal O. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin. Mol Pharm 2012; 9(9): 2778-86.
[http://dx.doi.org/10.1021/mp2006455] [PMID: 22770552]
[89]
Dinh HTT, Tran PHL, Duan W, Lee B-J, Tran TTD. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int J Pharm 2017; 533(1): 93-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.065] [PMID: 28951346]
[90]
Luu TD, Lee B-J, Tran PHL, Tran TTD. Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. J Pharm Investig 2019; 49(1): 127-34.
[http://dx.doi.org/10.1007/s40005-018-0393-5]
[91]
My Tran KT, Vo TV, Lee BJ, Duan W, Ha-Lien Tran P, Truong-Dinh Tran T. Encapsulation of Solid Dispersion in Solid Lipid Particles for Dissolution Enhancement of Poorly Water-Soluble Drug. Curr Drug Deliv 2018; 15(4): 576-84.
[http://dx.doi.org/10.2174/1567201814666170606101138] [PMID: 28595530]
[92]
Nguyen TN-G, Tran PH-L, Tran TV, Vo TV. Truong-DinhTran T. Development of a modified - solid dispersion in an uncommon approach of melting method facilitating properties of a swellable polymer to enhance drug dissolution. Int J Pharm 2015; 484(1-2): 228-34.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.064] [PMID: 25735669]
[93]
Tran TTD, Tran PHL, Khanh TN, Van TV, Lee BJ. Solubilization of poorly water-soluble drugs using solid dispersions. Recent Pat Drug Deliv Formul 2013; 7(2): 122-33.
[http://dx.doi.org/10.2174/1872211311307020004] [PMID: 23244679]
[94]
Tran CTM, Tran PHL, Tran TTD. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates. Drug Dev Ind Pharm 2019; 45(3): 514-9.
[http://dx.doi.org/10.1080/03639045.2018.1562466] [PMID: 30575412]
[95]
Tomitaka A, Kaushik A, Kevadiya BD, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today 2019; 24(3): 873-82.
[http://dx.doi.org/10.1016/j.drudis.2019.01.006] [PMID: 30660756]
[96]
Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 2011; 29(7): 323-32.
[http://dx.doi.org/10.1016/j.tibtech.2011.03.001] [PMID: 21489647]
[97]
Liyanage PY, Hettiarachchi SD, Zhou Y, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 419-33.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006] [PMID: 31034927]
[98]
McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008; 60(11): 1241-51.
[http://dx.doi.org/10.1016/j.addr.2008.03.014] [PMID: 18508157]
[99]
Liu Y-L, Chen D, Shang P, Yin D-C. A review of magnet systems for targeted drug delivery. J Control Release 2019; 302: 90-104.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.031] [PMID: 30946854]
[100]
Bahrami B, Hojjat-Farsangi M, Mohammadi H, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190: 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[101]
Zhang X, Yang X, Ji J, Liu A, Zhai G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148: 460-73.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.020] [PMID: 27665379]
[102]
Xu Z, Chen X, Sun Z, Li C, Jiang B. Recent progress on mitochondrial targeted cancer therapy based on inorganic nanomaterials. Materials Today Chemistry 2019; 12: 240-60.
[http://dx.doi.org/10.1016/j.mtchem.2019.02.004]
[103]
Sun C, Ding Y, Zhou L, et al. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine (Lond) 2017; 13(8): 2605-21.
[http://dx.doi.org/10.1016/j.nano.2017.07.009] [PMID: 28756093]
[104]
Abd Elrahman AA, Mansour FR. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol 2019.
[http://dx.doi.org/10.1016/j.jddst.2019.05.030]
[105]
Kudr J, Haddad Y, Richtera L, et al. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel) 2017; 7(9): 243.
[http://dx.doi.org/10.3390/nano7090243] [PMID: 28850089]
[106]
Wang L, Qin G, Geng S, Dai Y, Wang J-Y. Preparation of zein conjugated quantum dots and their in vivo transdermal delivery capacity through nude mouse skin. J Biomed Nanotechnol 2013; 9(3): 367-76.
[http://dx.doi.org/10.1166/jbn.2013.1557] [PMID: 23620991]
[107]
Reshma VG, Mohanan PV. Quantum dots: Applications and safety consequences. J Lumin 2019; 205: 287-98.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.015]
[108]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[109]
Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019; 196: 456-78.
[http://dx.doi.org/10.1016/j.talanta.2018.12.042] [PMID: 30683392]
[110]
Tran PH-L, Tran TT-D, Vo TV, Vo CL-N, Lee B-J. Novel multifunctional biocompatible gelatin-oleic acid conjugate: self-assembled nanoparticles for drug delivery. J Biomed Nanotechnol 2013; 9(8): 1416-31.
[http://dx.doi.org/10.1166/jbn.2013.1621] [PMID: 23926810]
[111]
Chen Y, Tezcan O, Li D, et al. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale 2017; 9(29): 10404-19.
[http://dx.doi.org/10.1039/C7NR03592F] [PMID: 28702658]
[112]
Chen Q, Zheng J, Yuan X, Wang J, Zhang L. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Mater Sci Eng C 2018; 82: 1-9.
[http://dx.doi.org/10.1016/j.msec.2017.08.026] [PMID: 29025636]
[113]
Zhang X, Liang N, Gong X, Kawashima Y, Cui F, Sun S. Tumor-targeting micelles based on folic acid and α-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Colloids Surf B Biointerfaces 2019; 177: 11-8.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.044] [PMID: 30690425]
[114]
Xu L, Jiang G, Chen H, et al. Folic acid-modified fluorescent dye-protein nanoparticles for the targeted tumor cell imaging. Talanta 2019; 194: 643-8.
[http://dx.doi.org/10.1016/j.talanta.2018.10.094] [PMID: 30609585]
[115]
Liu G, Pang J, Huang Y, Xie Q, Guan G, Jiang Y. Self-Assembled Nanospheres of Folate-Decorated Zein for the Targeted Delivery of 10-Hydroxycamptothecin. Ind Eng Chem Res 2017; 56(30): 8517-27.
[http://dx.doi.org/10.1021/acs.iecr.7b01632]
[116]
Tran TTD, Tran PHL, Yoon TJ, Lee BJ. Fattigation-platform theranostic nanoparticles for cancer therapy. Mater Sci Eng C 2017; 75: 1161-7.
[http://dx.doi.org/10.1016/j.msec.2017.03.012] [PMID: 28415402]
[117]
Tran TT-D, Tran PH-L, Amin HH, Lee B-J. Biodistribution and in vivo performance of fattigation-platform theranostic nanoparticles. Mater Sci Eng C 2017; 79: 671-8.
[http://dx.doi.org/10.1016/j.msec.2017.05.029] [PMID: 28629067]
[118]
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63(1-2): 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[119]
Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater 2017; 61: 88-100.
[http://dx.doi.org/10.1016/j.actbio.2017.04.017] [PMID: 28433787]
[120]
Chauhan DS, Arunkumar P, Prasad R, et al. Facile synthesis of plasmonic zein nanoshells for imaging-guided photothermal cancer therapy. Mater Sci Eng C 2018; 90: 539-48.
[http://dx.doi.org/10.1016/j.msec.2018.04.081] [PMID: 29853123]
[121]
Yang X, Yang M, Pang B, Vara M, Xia Y. Gold nanomaterials at work in biomedicine. Chem Rev 2015; 115(19): 10410-88.
[http://dx.doi.org/10.1021/acs.chemrev.5b00193] [PMID: 26293344]
[122]
Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A. Gold nanoparticle-protein agglomerates as versatile nanocarriers for drug delivery. Small 2013; 9(20): 3494-505.
[http://dx.doi.org/10.1002/smll.201203095] [PMID: 23447544]
[123]
Shanavas A, Sasidharan S, Bahadur D, Srivastava R. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. J Colloid Interface Sci 2017; 486: 112-20.
[http://dx.doi.org/10.1016/j.jcis.2016.09.060] [PMID: 27697648]
[124]
Yang K, Hu L, Ma X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 2012; 24(14): 1868-72.
[http://dx.doi.org/10.1002/adma.201104964] [PMID: 22378564]
[125]
Sabra SA, Elzoghby AO, Sheweita SA, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 2018; 128: 156-69.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.023] [PMID: 29689288]
[126]
Sabra SA, Sheweita SA, Haroun M, et al. Magnetically Guided Self-Assembled Protein Micelles for Enhanced Delivery of Dasatinib to Human Triple-Negative Breast Cancer Cells. J Pharm Sci 2019; 108(5): 1713-25.
[http://dx.doi.org/10.1016/j.xphs.2018.11.044] [PMID: 30528944]
[127]
Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem 1994; 218(1): 87-91.
[http://dx.doi.org/10.1006/abio.1994.1144] [PMID: 8053572]
[128]
Golla K, Bhaskar C, Ahmed F, Kondapi AK. A target-specific oral formulation of Doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J Cancer 2013; 4(8): 644-52.
[http://dx.doi.org/10.7150/jca.7093] [PMID: 24155776]
[129]
Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER(-)/PR(-)/HER2. Nanomedicine (Lond) 2016; 11(3): 249-68.
[http://dx.doi.org/10.2217/nnm.15.199] [PMID: 26785603]
[130]
Kamel NM, Helmy MW, Abdelfattah E-Z, et al. inhalable dual-targeted hybrid lipid nanocore–protein shell composites for combined delivery of genistein and all-trans retinoic acid to lung cancer cells. ACS Biomater Sci Eng 2019.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01374]
[131]
Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release 2008; 129(1): 59-65.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.001] [PMID: 18501462]
[132]
Tran TTD, Tran PHL, Lee BJ. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.009] [PMID: 19141319]
[133]
Tran TTD, Tran PHL, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.039] [PMID: 19782736]
[134]
Tran PHL, Tran TT-D, Lee KH, Kim DJ, Lee BJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 2010; 7(5): 647-61.
[http://dx.doi.org/10.1517/17425241003645910] [PMID: 20205605]
[135]
Taheri A, Dinarvand R, Atyabi F, et al. Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles. J Biomed Nanotechnol 2011; 7(6): 743-53.
[http://dx.doi.org/10.1166/jbn.2011.1340] [PMID: 22416572]
[136]
Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces 2011; 88(1): 483-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.07.036] [PMID: 21831615]
[137]
Phan UT, Nguyen KT, Vo TV, Duan W, Tran PH, Tran TD. Investigation of Fucoidan-Oleic Acid Conjugate for Delivery of Curcumin and Paclitaxel. Anticancer Agents Med Chem 2016; 16(10): 1281-7.
[http://dx.doi.org/10.2174/1567201810666131124140259] [PMID: 27237629]
[138]
Wheelwright WVK, Easteal AJ, Ray S, Nieuwoudt MK. A one-step approach for esterification of zein with methanol. J Appl Polym Sci 2013; 127(5): 3500-5.
[http://dx.doi.org/10.1002/app.37631]
[139]
Yin H, Lu T, Liu L, Lu C. Preparation, characterization and application of a novel biodegradable macromolecule: carboxymethyl zein. Int J Biol Macromol 2015; 72: 480-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.025] [PMID: 25173708]
[140]
Sessa DJ, Cheng H, Kim S, Selling GW, Biswas A. Zein-based polymers formed by modifications with isocyanates. Ind Crops Prod 2013; 43: 106-13.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy