Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview

Author(s): Umesh Panwar, Ishwar Chandra, Chandrabose Selvaraj and Sanjeev K. Singh*

Volume 25, Issue 31, 2019

Page: [3390 - 3405] Pages: 16

DOI: 10.2174/1381612825666190911160244

Price: $65

Abstract

Background: Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times.

Methods: The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost.

Results: The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one.

Conclusion: Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.

Keywords: AIDS, anti-HIV, biological targets, computational drug discovery, drugs, HIV-1 life cycle, virtual screening.

[1]
Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1(1)a006841
[http://dx.doi.org/10.1101/cshperspect.a006841] [PMID: 22229120]
[2]
Greene WC. A history of AIDS: looking back to see ahead. Eur J Immunol 2007; 37(S1)(Suppl. 1): S94-S102.
[http://dx.doi.org/10.1002/eji.200737441] [PMID: 17972351]
[3]
Barin F, M’Boup S, Denis F, et al. Serological evidence for virus related to simian T-lymphotropic retrovirus III in residents of West Africa. Lancet 1985; 2(8469-70): 1387-9.
[http://dx.doi.org/10.1016/S0140-6736(85)92556-5] [PMID: 2867393]
[4]
Weiss RA, Dalgleish AG, Loveday C, Pillay D. Human Immunodeficiency Viruses Principles and Practice of Clinical Virology. John Wiley & Sons Ltd 2004; pp. 721-57.
[5]
Luciw PA. Human immunodeficiency viruses and their replication Virology. 3rd ed. Philadelphia: Lippincott-Raven 1996; pp. 1881-952.
[6]
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 2010; 85(1): 1-18.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.002] [PMID: 20018391]
[7]
Danforth K, Granich R, Wiedeman D, Baxi S, Padian N. Global Mortality and morbidity of HIV/AIDS Source Major Infectious Diseases. 3rd ed. Washington, DC: The International Bank for Reconstruction and Development/The World Bank 2017.
[http://dx.doi.org/10.1596/978-1-4648-0524-0_ch2]
[8]
HIV Treatment Overview [homepage on the Internet] HIVgov [updated 2019 March 29] Available from:. https://www.hiv.gov/hiv-basics/staying-in-hiv-care/hiv-treatment/hiv-treatment-overview
[9]
Bisht N, Singh BK. Role of computer aided drug design in drug development and drug discovery. Int J Pharm Sci Res 2018; 9: 1405-15.
[10]
Surabhi S, Singh B. Computer aided drug design: an overview. J Drug Deliv Ther 2018; 8: 504-9.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[11]
Eaton JW, Hallett TB, Garnett GP. Concurrent sexual partnerships and primary HIV infection: a critical interaction. AIDS Behav 2011; 15(4): 687-92.
[http://dx.doi.org/10.1007/s10461-010-9787-8] [PMID: 20890654]
[12]
World Health Organization [homepage on the Internet]. HIV/AIDS key facts [cited 2019 Jul 17] Available from:. https://www.who.int/news-room/fact-sheets/detail/hiv-aids
[13]
UNAIDS [homepage on the Internet]. Global HIV & AIDS statistics — 2018 fact sheet 2018. Available from:. https://www.unaids.org/en/resources/fact-sheet
[14]
World Health Organization [homepage on the Internet]. Global summary of the HIV/AIDS epidemic Available from:. https://www.who.int/hiv/data/en/
[15]
Global information and education on HIV and AIDS [homepage on the Internet]. HIV and AIDS in India Available from:. https://www.avert.org/professionals/hiv-around-world/asia-pacific/india
[16]
Al-Jabri AA. Mechanisms of host resistance against HIV infection and progression to AIDS. Sultan Qaboos Univ Med J 2007; 7(2): 82-96.
[PMID: 21748089]
[17]
Freed EO. HIV-1 replication. Somat Cell Mol Genet 2001; 26(1-6): 13-33.
[http://dx.doi.org/10.1023/A:1021070512287] [PMID: 12465460]
[18]
Seth P. Evolution of HIV-1 in India. Indian J Virol 2010; 21(1): 3-7.
[http://dx.doi.org/10.1007/s13337-010-0001-4] [PMID: 23637473]
[19]
Jacobs GB, Wilkinson E, Isaacs S, et al. HIV-1 subtypes B and C unique recombinant forms (URFs) and transmitted drug resistance identified in the Western Cape Province, South Africa. PLoS One 2014; 9(6) e90845
[http://dx.doi.org/10.1371/journal.pone.0090845] [PMID: 24609015]
[20]
Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD, Dougherty JP. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 2000; 74(3): 1234-40.
[http://dx.doi.org/10.1128/JVI.74.3.1234-1240.2000] [PMID: 10627533]
[21]
Ryan EL, Hollingworth R, Grand RJ. Activation of the DNA damage response by RNA viruses. Biomolecules 2016; 6(1): 2.
[http://dx.doi.org/10.3390/biom6010002] [PMID: 26751489]
[22]
Hindmarsh P, Leis J. Retroviral DNA integration. Microbiol Mol Biol Rev 1999; 63(4): 836-43.
[PMID: 10585967]
[23]
Centers for Diesease Control adn Prevention [homepage on the Internet]. HIV Transmission Available from:. https://www.cdc.gov/hiv/basics/transmission.html
[24]
AIDSinfo [homepage on the Internet]. The HIV Life Cycle Available from:. https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/73/the-hiv-life-cycle
[25]
Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG. Manipulation of dendritic cell function by viruses. Curr Opin Microbiol 2010; 13(4): 524-9.
[http://dx.doi.org/10.1016/j.mib.2010.06.002] [PMID: 20598938]
[26]
Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505(7484): 509-14.
[http://dx.doi.org/10.1038/nature12940] [PMID: 24356306]
[27]
Garg H, Mohl J, Joshi A. HIV-1 induced bystander apoptosis. Viruses 2012; 4(11): 3020-43.
[http://dx.doi.org/10.3390/v4113020] [PMID: 23202514]
[28]
Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 2012; 10(4): 279-90.
[http://dx.doi.org/10.1038/nrmicro2747] [PMID: 22421880]
[29]
Blood GA. Human immunodeficiency virus (HIV). Transfus Med Hemother 2016; 43(3): 203-22.
[http://dx.doi.org/10.1159/000445852] [PMID: 27403093]
[30]
Malim MH, Emerman M. HIV-1 accessory proteins--ensuring viral survival in a hostile environment. Cell Host Microbe 2008; 3(6): 388-98.
[http://dx.doi.org/10.1016/j.chom.2008.04.008] [PMID: 18541215]
[31]
Freed EO, Martin MA. HIVs and their replication. Fields Virology 5th ed. 2107-86.
[32]
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2012; 2(2)a006916
[http://dx.doi.org/10.1101/cshperspect.a006916] [PMID: 22355797]
[33]
Donahue DA, Sloan RD, Kuhl BD, Bar-Magen T, Schader SM, Wainberg MA. Stage-dependent inhibition of HIV-1 replication by antiretroviral drugs in cell culture. Antimicrob Agents Chemother 2010; 54(3): 1047-54.
[http://dx.doi.org/10.1128/AAC.01537-09] [PMID: 20038621]
[34]
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8)a006866
[http://dx.doi.org/10.1101/cshperspect.a006866] [PMID: 22908191]
[35]
Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393(6686): 648-59.
[http://dx.doi.org/10.1038/31405] [PMID: 9641677]
[36]
McDonald D, Vodicka MA, Lucero G, et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002; 159(3): 441-52.
[http://dx.doi.org/10.1083/jcb.200203150] [PMID: 12417576]
[37]
Cosnefroy O, Murray PJ, Bishop KN. HIV-1 capsid uncoating initiates after the first strand transfer of reverse transcription. Retrovirology 2016; 13(1): 58.
[http://dx.doi.org/10.1186/s12977-016-0292-7] [PMID: 27549239]
[38]
Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med 2012; 2(7) a006890
[http://dx.doi.org/10.1101/cshperspect.a006890] [PMID: 22762018]
[39]
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2014; 15(5): 455-65.
[http://dx.doi.org/10.1631/jzus.B1400059] [PMID: 24793763]
[40]
Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational control of the HIV unspliced genomic RNA. Viruses 2015; 7(8): 4326-51.
[http://dx.doi.org/10.3390/v7082822] [PMID: 26247956]
[41]
Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 2013; 5(1) a013250
[http://dx.doi.org/10.1101/cshperspect.a013250] [PMID: 23284050]
[42]
Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol 2015; 13(8): 484-96.
[http://dx.doi.org/10.1038/nrmicro3490] [PMID: 26119571]
[43]
Yang H, Nkeze J, Zhao RY. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2012; 2(1): 32.
[http://dx.doi.org/10.1186/2045-3701-2-32] [PMID: 22971934]
[44]
Nayak C, Chandra I, Singh SK. An in silico pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV-1 protease variants. J Cell Biochem 2019; 120(6): 9063-81.
[http://dx.doi.org/10.1002/jcb.28181] [PMID: 30506751]
[45]
Selvaraj C, Singh SK, Tripathi SK, Reddy KK, Rama M. In silico screening of indinavir-based compounds targeting proteolytic activity in HIV PR: binding pocket fit approach. Med Chem Res 2012; 21: 4060-8.
[http://dx.doi.org/10.1007/s00044-011-9941-5]
[46]
Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med 2012; 2(4)a007161
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[47]
Kemnic TR, Gulick PG. HIV antiretroviral therapy StatPearls Treasure Island. FL: StatPearls Publishing 2019.
[48]
Zhang X. Anti-retroviral drugs: current state and development in the next decade. Acta pharma sin B 2018; 8: 131-6.
[http://dx.doi.org/10.1016/j.apsb.2018.01.012]
[49]
A Timeline of HIV and AIDS [homepage on the Internet] Available from:. https://www.hiv.gov/hiv-basics/overview/history/hiv-and-aids-timeline
[50]
Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 1972; 109(1): 129-35.
[PMID: 4113792]
[51]
Rapid HIV test kits. Health Devices 2006; 35(5): 157-77.
[PMID: 16749249]
[52]
Doyle NM, Levison JE, Gardner MO. Rapid HIV versus enzyme-linked immunosorbent assay screening in a low-risk Mexican American population presenting in labor: a cost-effectiveness analysis. Am J Obstet Gynecol 2005; 193(3 Pt 2): 1280-5.
[http://dx.doi.org/10.1016/j.ajog.2005.07.001] [PMID: 16157152]
[53]
Alexander TS. Human immunodeficiency virus diagnostic testing: 30 years of evolution. Clin Vaccine Immunol 2016; 23(4): 249-53.
[http://dx.doi.org/10.1128/CVI.00053-16] [PMID: 26936099]
[54]
Amsden GW, Kowalsky SF, Morse GD. Trimetrexate for Pneumocystis carinii pneumonia in patients with AIDS. Ann Pharmacother 1992; 26(2): 218-26.
[http://dx.doi.org/10.1177/106002809202600217] [PMID: 1532518]
[55]
Moussalli C. Alpha interferon: a new treatment for AIDS-related Kaposi’s sarcoma. AIDS Patient Care 1989; 3(3): 16.
[http://dx.doi.org/10.1089/apc.1989.3.16]
[56]
Mitsuyasu RT. Interferon alpha in the treatment of AIDS-related Kaposi’s sarcoma. Br J Haematol 1991; 79(Suppl. 1): 69-73.
[http://dx.doi.org/10.1111/j.1365-2141.1991.tb08124.x] [PMID: 1931714]
[57]
Van Norman GA. Expanding patient access to investigational new drugs: overview of intermediate and widespread treatment investigational new drugs, and emergency authorization in public health emergencies. JACC Basic Transl Sci 2018; 3(3): 403-14.
[http://dx.doi.org/10.1016/j.jacbts.2018.02.001] [PMID: 30062226]
[58]
Crumpacker CS. Ganciclovir. N Engl J Med 1996; 335(10): 721-9.
[http://dx.doi.org/10.1056/NEJM199609053351007] [PMID: 8786764]
[59]
U.S. National Library of Medicine [homepage on the Internet]. A Treatment Protocol for the Use of Intravenous Ganciclovir in AIDS Patients with Immediately Sight-Threatening CMV Retinitis Available from:. https://clinicaltrials.gov/ct2/show/NCT00000698
[60]
Young FE, Nightingale SL, Cooper EC, Trapnell CB. Aerosolized pentamidine. Approved for HIV-infected individuals at high risk for Pneumocystis carinii pneumonia. Arch Intern Med 1989; 149(11): 2412-3.
[http://dx.doi.org/10.1001/archinte.1989.00390110018005] [PMID: 2818104]
[61]
HIV InSite [homepage on the Internet]. Zidovudine (Retrovir) Available from:. hivinsite.ucsf.edu/InSite?page=ar-01-01
[62]
U.S. National Library of Medicine [homepage on the Internet]. A Study of Dideoxyinosine (ddI) in HIV-Infected Children Who Have Not Had Success With Zidovudine or Who Cannot Take Zidovudine Available from:. https://clinicaltrials.gov/ct2/show/NCT00000963
[63]
Shelton MJ, O’Donnell AM, Morse GD. Zalcitabine. Ann Pharmacother 1993; 27(4): 480-9.
[http://dx.doi.org/10.1177/106002809302700416] [PMID: 8097417]
[64]
NIH U.S. National Library of Medicine [homepage on the Internet]. Clinical Alert: Important Therapeutic Information on Treatment of HIV Infection in HIV-Infected Patients Who Are Intolerant of or Have Failed Zidovudine Therapy Available from:. https://www.nlm.nih.gov/databases/alerts/ddi_ddc.html
[65]
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 2010; 85(1): 1-18.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.002] [PMID: 20018391]
[66]
Zhang X. Anti-retroviral drugs: current state and development in the next decade. Acta Pharm Sin B 2018; 8(2): 131-6.
[http://dx.doi.org/10.1016/j.apsb.2018.01.012] [PMID: 29719774]
[67]
James JS. Lamivudine (3TC) approved for combination use with AZT. AIDS Treat News 1995; (236): 1-5.
[PMID: 11363049]
[68]
James JS. Saquinavir (Invirase): first protease inhibitor approved--reimbursement, information hotline numbers. AIDS Treat News 1995; (237): 1-2.
[PMID: 11363073]
[69]
Folkers G. Two new protease inhibitors approved by FDA. NIAID AIDS Agenda 1996; 4-5.
[PMID: 11363799]
[70]
Yang Y, Lamendola MH, Mendoza M, et al. Performance characteristics of the COBAS AmpliScreen HIV-1 test, version 1.5, an assay designed for screening plasma mini-pools. Transfusion 2001; 41(5): 643-51.
[http://dx.doi.org/10.1046/j.1537-2995.2001.41050643.x] [PMID: 11346701]
[71]
Bowersox J. Nevirapine approved by FDA. NIAID AIDS Agenda 1996; 10.
[PMID: 11363918]
[72]
Olmo M, Podzamczer D. A review of nelfinavir for the treatment of HIV infection. Expert Opin Drug Metab Toxicol 2006; 2(2): 285-300.
[http://dx.doi.org/10.1517/17425255.2.2.285] [PMID: 16866614]
[73]
Delavirdine gets FDA approval. Aids Alert 1997; 12(6): 70.
[PMID: 11364363]
[74]
Portsmouth SD, Scott CJ. The renaissance of fixed dose combinations: combivir. Ther Clin Risk Manag 2007; 3(4): 579-83.
[PMID: 18472979]
[75]
Highleyman L. Amprenavir (Agenerase) receives FDA approval. BETA 1999; 12(2): 3.
[PMID: 11366693]
[76]
Yeni PG, Hammer SM, Carpenter CC, et al. Antiretroviral treatment for adult HIV infection in 2002: updated recommendations of the International AIDS Society-USA Panel. JAMA 2002; 288(2): 222-35.
[http://dx.doi.org/10.1001/jama.288.2.222] [PMID: 12095387]
[77]
Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am 2014; 28(3): 371-402.
[http://dx.doi.org/10.1016/j.idc.2014.06.001] [PMID: 25151562]
[78]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[PMID: 19209283]
[79]
Moreno S, Hernández B, Dronda F. Didanosine enteric-coated capsule: current role in patients with HIV-1 infection. Drugs 2007; 67(10): 1441-62.
[http://dx.doi.org/10.2165/00003495-200767100-00006] [PMID: 17600392]
[80]
FDA approves Trizivir for HIV infection. AIDS Read 2000; 10(12): 701.
[PMID: 11189737]
[81]
Emtricitabine/tenofovir disoproxil fumarate. Drugs R D 2004; 5(3): 160-1.
[http://dx.doi.org/10.2165/00126839-200405030-00004] [PMID: 15139777]
[82]
Grant RM, Kuritzkes DR, Johnson VA, et al. Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol 2003; 41(4): 1586-93.
[http://dx.doi.org/10.1128/JCM.41.4.1586-1593.2003] [PMID: 12682149]
[83]
Achenbach CJ, Darin KM, Murphy RL, Katlama C. Atazanavir/ritonavir-based combination antiretroviral therapy for treatment of HIV-1 infection in adults. Future Virol 2011; 6(2): 157-77.
[http://dx.doi.org/10.2217/fvl.10.89] [PMID: 21731578]
[84]
Liotta DC, Painter GR. Discovery and development of the anti-human immunodeficiency virus drug, emtricitabine (Emtriva, FTC). Acc Chem Res 2016; 49(10): 2091-8.
[http://dx.doi.org/10.1021/acs.accounts.6b00274] [PMID: 27704821]
[85]
Streeck H, Rockstroh JK. Review of tipranavir in the treatment of drug-resistant HIV. Ther Clin Risk Manag 2007; 3(4): 641-51.
[PMID: 18472987]
[86]
Hao J, Rodriguez-Monguio R, Seoane-Vazquez E. Fixed-dose combination drug approvals, patents and market exclusivities compared to single active ingredient pharmaceuticals. PLoS One 2015; 10(10)e0140708
[http://dx.doi.org/10.1371/journal.pone.0140708] [PMID: 26469277]
[87]
Patel A, Gandhi H, Upaganlawar A. Tesamorelin: a hope for ART-induced lipodystrophy. J Pharm Bioallied Sci 2011; 3(2): 319-20.
[http://dx.doi.org/10.4103/0975-7406.80763] [PMID: 21687371]
[88]
Daskalakis D. HIV diagnostic testing: evolving technology and testing strategies. Top Antivir Med 2011; 19(1): 18-22.
[PMID: 21852712]
[89]
Sharma M, Saravolatz LD. Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. J Antimicrob Chemother 2013; 68(2): 250-6.
[http://dx.doi.org/10.1093/jac/dks404] [PMID: 23099850]
[90]
Drake SM. NNRTIs-a new class of drugs for HIV. J Antimicrob Chemother 2000; 45(4): 417-20.
[http://dx.doi.org/10.1093/jac/45.4.417] [PMID: 10747817]
[91]
Sluis-Cremer N. Future of nonnucleoside reverse transcriptase inhibitors. Proc Natl Acad Sci USA 2018; 115(4): 637-8.
[http://dx.doi.org/10.1073/pnas.1720975115] [PMID: 29326232]
[92]
Sax PE, DeJesus E, Mills A, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 2012; 379(9835): 2439-48.
[http://dx.doi.org/10.1016/S0140-6736(12)60917-9] [PMID: 22748591]
[93]
Kabbara WK, Ramadan WH. Emtricitabine/rilpivirine/tenofovir disoproxil fumarate for the treatment of HIV-1 infection in adults. J Infect Public Health 2015; 8(5): 409-17.
[http://dx.doi.org/10.1016/j.jiph.2015.04.020] [PMID: 26001757]
[94]
Olin JL, Spooner LM, Klibanov OM. Elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate single tablet for HIV-1 infection treatment. Ann Pharmacother 2012; 46(12): 1671-7.
[http://dx.doi.org/10.1345/aph.1R468] [PMID: 23136357]
[95]
Patel TS, Crutchley RD, Tucker AM, Cottreau J, Garey KW. Crofelemer for the treatment of chronic diarrhea in patients living with HIV/AIDS. HIV AIDS (Auckl) 2013; 5: 153-62.
[PMID: 23888120]
[96]
Osterholzer DA, Goldman M. Dolutegravir: a next-generation integrase inhibitor for treatment of HIV infection. Clin Infect Dis 2014; 59(2): 265-71.
[http://dx.doi.org/10.1093/cid/ciu221] [PMID: 24723281]
[97]
Lampiris HW. Elvitegravir: a once-daily, boosted, HIV-1 integrase inhibitor. Expert Rev Anti Infect Ther 2012; 10(1): 13-20.
[http://dx.doi.org/10.1586/eri.11.157] [PMID: 22149610]
[98]
U.S. Food & Drug Administration [homepage on the Internet]. HIV/AIDS Historical Time Line 2010 – 2017 Available from:. https://www.fda.gov/patients/hiv-timeline-and-history-approvals/hivaids-historical-time-line-2010-2017
[99]
The Medical Letter [homepage on the Internet] Cobicistat (Tybost) and Combinations for HIV Available from:. https://secure. medicalletter.org/article-share?a=1482c&p=tml&title=Cobicistat%20(Tybost)%20and%20Combinations%20for%20HIV&cannot accesstitle= 1
[100]
Badowski ME, Pérez SE, Biagi M, Littler JA. New antiretroviral treatment for HIV. Infect Dis Ther 2016; 5(3): 329-52.
[http://dx.doi.org/10.1007/s40121-016-0126-x] [PMID: 27539455]
[101]
TheBodyPro For the HIV/AIDS Work Force [homepage on the Internet]. An Overview of Prezcobix (Darunavir/Cobicistat) Available from:. https://www.thebodypro.com/article/an-overview-of-prezcobix-darunavircobicistat
[102]
Descovy and Odefsey: Gilead Sciences’ Recently Approved TAFBased Products [homepage on the Internet] Available from:. https://marketrealist.com/2016/09/descovy-and-odefsey-gilead-sciences-recently-approved-taf-based-products/
[103]
Squillace N, Bozzi G, Colella E, Gori A, Bandera A. Darunavir-cobicistat-emtricitabine-tenofovir alafenamide: safety and efficacy of a protease inhibitor in the modern era. Drug Des Devel Ther 2018; 12: 3635-43.
[http://dx.doi.org/10.2147/DDDT.S147493] [PMID: 30464395]
[104]
MedScape [homepage on the Internet]. EC Clears Two New HIV Drugs (Pifeltro and Delstrigo) Available from:. https://www.medscape.com/viewarticle/905835
[105]
MPR The Right Dose of Information [homepage on the Internet]. Temixys Approved for the Treatment of HIV-1 Infection Available from:. https://www.empr.com/home/news/temixys-approved-for-the-treatment-of-hiv-1-infection/
[106]
CenterWatch [homepage on the Internet]. Symtuza (darunavir, cobicistat, emtricitabine, and tenofovir alafenamide) Available from:. https://www.centerwatch.com/drug-information/fda-approved-drugs/drug/100302/symtuza-darunavir-cobicistat-emtricitabine-and-tenofovir-alafenamide
[107]
AIDSinfo [homepage on the Internet]. FDA-Approved HIV Medicines Available from:. https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/58/fda-approved-hiv-medicines
[108]
CATIE [homepage on the Internet]. New drugs, new hope and possible timelines Available from:. https://www.catie.ca/en/treatmentupdate/treatmentupdate-220/anti-hiv-agents/new-drugs-new-hope-and-possible-timelines
[109]
Colombier MA, Molina JM. Doravirine: a review. Curr Opin HIV AIDS 2018; 13(4): 308-14.
[http://dx.doi.org/10.1097/COH.0000000000000471] [PMID: 29794817]
[110]
Deeks ED. Doravirine: First Global Approval. Drugs 2018; 78(15): 1643-50.
[http://dx.doi.org/10.1007/s40265-018-0993-4] [PMID: 30341683]
[111]
Luo A, Jiang X, Ren H. Lamivudine plus tenofovir combination therapy versus lamivudine monotherapy for HBV/HIV coinfection: a meta-analysis. Virol J 2018; 15(1): 139.
[http://dx.doi.org/10.1186/s12985-018-1050-3] [PMID: 30201035]
[112]
Drugs.Com Know more be sure [homepage on the Internet]. FDA Approves Dovato (dolutegravir/lamivudine) for HIV-1 Infection Available from:. https://www.drugs.com/newdrugs/fda-approves-dovato-dolutegravir-lamivudine-hiv-1-infection-4944.html
[113]
U.S. Food & Drug Administration [homepage on the Internet]. FDA approves first two-drug complete regimen for HIV-infected patients who have never received antiretroviral treatment Available from:. https://www.fda.gov/news-events/press-announcements/fda-approves-first-two-drug-complete-regimen-hiv-infected-patients-who-have-never-received
[114]
Vaidya KA, Kadam AV, Nema V. Anti-Retroviral Drugs for HIV: Old and New. Austin J HIV AIDS Res 2016; 3: 1026.
[115]
Panwar U, Singh SK. An overview on Zika Virus and the importance of computational drug discovery. J Expl Res Pharm 2018; 3: 43-51.
[http://dx.doi.org/10.14218/JERP.2017.00025]
[116]
Sarkar S, Nandi S. QSAR modeling of HEPT compounds: an attempt to anti HIV drug design. J Comput Meth Mol Des 2014; 4: 15-25.
[117]
Imam SS, Gilani SJ. Computer aided drug design: a novel loom to drug discovery. Org Med Chem IJ 2017; 1(4)
[118]
Sharma V, Kumar V. Efficient way of drug designing: a comprehensive review on computational techniques. Bull Pharm Res 2014; 4: 118-23.
[119]
Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S. Insilico drug design: an approach which revolutionarised the drug discovery process.OA drug design & delivery. 2013; 1: pp. 3-7.
[120]
Sharma SK, Sharma E, Sharma Y. A review: recent computational approaches in medicinal chemistry: computer aided drug designing and delivery. Pharm Innov 2017; 6(5, Part A): 5.
[121]
Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. Int J Mol Sci 2019; 20(11) E2783
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[122]
Mazanetz MP, Goode CHF, Chudyk EI. Ligand- and structure-based drug design and optimization using KNIME. Curr Med Chem 2019. In press
[http://dx.doi.org/10.2174/0929867326666190409141016] [PMID: 30963962]
[123]
Salman M, Ahmed S, Nandi S. QSAR and anticancer drug design on benzothienopyrimidinones as promising pim kinase inhibitors utilizing structural descriptors. Int J Quant Str-Prop Relation 2019; 4: 82-99.
[124]
Nandi S, Ahmed S, Saxena AK. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ Res 2018; 29(2): 151-70.
[http://dx.doi.org/10.1080/1062936X.2017.1419375] [PMID: 29347843]
[125]
Nandi S, Bagchi MC. QSAR of chalcones utilizing theoretical molecular descriptors. Curr Comput Aided Drug Des 2015; 11(2): 184-93.
[http://dx.doi.org/10.2174/1573409911666150702101559] [PMID: 26135340]
[126]
Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des 2019; 93(1): 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[127]
Vyas VK, Ukawala RD, Ghate M, Chintha C. Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 2012; 74(1): 1-17.
[http://dx.doi.org/10.4103/0250-474X.102537] [PMID: 23204616]
[128]
Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol 2018; 9: 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[129]
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[130]
Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol 2019; 7: 83-9.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[131]
Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets 2019; 20(5): 501-21.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[132]
Panwar U, Singh SK. Identification of novel pancreatic lipase inhibitors using in silico studies. Endocr Metab Immune Disord Drug Targets 2019; 19(4): 449-57.
[133]
Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 2013; 20(23): 2839-60.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[134]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 2018; 9: 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[135]
Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 2010; 15(11-12): 444-50.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[136]
Kurogi Y, Güner OF. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 2001; 8(9): 1035-55.
[http://dx.doi.org/10.2174/0929867013372481] [PMID: 11472240]
[137]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 2018; 9: 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[138]
Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design--a review. Curr Top Med Chem 2010; 10(1): 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[139]
Heritage TW, Lowis DR. Molecular hologram QSAR.ACS Symp Ser. 1999; 719: pp. 212-5.
[http://dx.doi.org/10.1021/bk-1999-0719.ch014]
[140]
Chavda J, Bhatt H. 3D-QSAR (CoMFA, CoMSIA, HQSAR and topomer CoMFA), MD simulations and molecular docking studies on purinylpyridine derivatives as B-Raf inhibitors for the treatment of melanoma cancer. Str Chem 2019; pp. 1-5.
[141]
Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988; 110(18): 5959-67.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[142]
Panwar U, Singh SK. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). J Biomol Struct Dyn 2018; 36(12): 3199-217.
[http://dx.doi.org/10.1080/07391102.2017.1384400] [PMID: 28948865]
[143]
van Hilten N, Chevillard F, Kolb P. Virtual compound libraries in computer-assisted drug discovery. J Chem Inf Model 2019; 59(2): 644-51.
[http://dx.doi.org/10.1021/acs.jcim.8b00737] [PMID: 30624918]
[144]
ScienceDaily [homepage on the Internet] Learning from nature's bounty: New libraries for drug discovery. Available from:. www.sciencedaily.com/releases/2019/06/190611155609.htm
[145]
Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 2014; 14: 1923-38.
[http://dx.doi.org/10.2174/1568026614666140929124445]
[146]
Śledź P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol 2018; 48: 93-102.
[http://dx.doi.org/10.1016/j.sbi.2017.10.010] [PMID: 29149726]
[147]
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem 2016; 12: 2694-718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[148]
Phillips MA, Stewart MA, Woodling DL, Xie ZR. Has molecular docking ever brought us a medicine? IntechOpen
[http://dx.doi.org/10.5772/intechopen.72898]
[149]
van Montfort RLM, Workman P. Structure-based drug design: aiming for a perfect fit. Essays Biochem 2017; 61(5): 431-7.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[150]
Hu G, Ma A, Dou X, Zhao L, Wang J. Computational studies of a mechanism for binding and drug resistance in the wild type and four mutations of HIV-1 protease with a GRL-0519 inhibitor. Int J Mol Sci 2016; 17(6): 819.
[http://dx.doi.org/10.3390/ijms17060819] [PMID: 27240358]
[151]
Lv Z, Chu Y, Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 2015; 7: 95-104.
[PMID: 25897264]
[152]
McKeage K, Perry CM, Keam SJ. Darunavir: a review of its use in the management of HIV infection in adults. Drugs 2009; 69(4): 477-503.
[http://dx.doi.org/10.2165/00003495-200969040-00007] [PMID: 19323590]
[153]
Ghosh AK, Osswald HL, Prato G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J Med Chem 2016; 59(11): 5172-208.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01697] [PMID: 26799988]
[154]
Midde NM, Patters BJ, Rao P, Cory TJ, Kumar S. Investigational protease inhibitors as antiretroviral therapies. Expert Opin Investig Drugs 2016; 25(10): 1189-200.
[http://dx.doi.org/10.1080/13543784.2016.1212837] [PMID: 27415449]
[155]
Ul-Haq Z, Usmani S, Shamshad H, Mahmood U, Halim SA. A combined 3D-QSAR and docking studies for the in-silico prediction of HIV-protease inhibitors. Chem Cent J 2013; 7(1): 88.
[http://dx.doi.org/10.1186/1752-153X-7-88] [PMID: 23683267]
[156]
Reddy KK, Singh SK, Tripathi SK, Selvaraj C. Identification of potential HIV-1 integrase strand transfer inhibitors: in silico virtual screening and QM/MM docking studies. SAR QSAR Environ Res 2013; 24(7): 581-95.
[http://dx.doi.org/10.1080/1062936X.2013.772919] [PMID: 23521430]
[157]
Choi E, Mallareddy JR, Lu D, Kolluru S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci OA 2018; 4(9)FSO338
[http://dx.doi.org/10.4155/fsoa-2018-0060] [PMID: 30416746]
[158]
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the molecular mechanism of cross-resistance to HIV-1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis. J Chem Inf Model 2013; 53(1): 210-22.
[http://dx.doi.org/10.1021/ci300541c] [PMID: 23231029]
[159]
Lapkouski M, Tian L, Miller JT, Le Grice SFJ, Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 2013; 20(2): 230-6.
[http://dx.doi.org/10.1038/nsmb.2485] [PMID: 23314251]
[160]
Gu WG, Zhang X, Yuan JF. Anti-HIV drug development through computational methods. AAPS J 2014; 16(4): 674-80.
[http://dx.doi.org/10.1208/s12248-014-9604-9] [PMID: 24760437]
[161]
Kudalkar SN, Beloor J, Quijano E, et al. From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection. Proc Natl Acad Sci USA 2018; 115(4): E802-11.
[http://dx.doi.org/10.1073/pnas.1717932115] [PMID: 29279368]
[162]
Cherne MD, Hall J, Kellner A, Chong CF, Cole AL, Cole AM. Avirulins, a novel class of HIV-1 reverse transcriptase inhibitors effective in the female reproductive tract mucosa. Viruses 2019; 11(5): 408.
[http://dx.doi.org/10.3390/v11050408] [PMID: 31052477]
[163]
Santos LH, Ferreira RS, Caffarena ER. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Mem Inst Oswaldo Cruz 2015; 110(7): 847-64.
[http://dx.doi.org/10.1590/0074-02760150239] [PMID: 26560977]
[164]
Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 entry inhibitors: a review of experimental and computational studies. Chem Biodivers 2018; 15(10) e1800159
[http://dx.doi.org/10.1002/cbdv.201800159] [PMID: 30027572]
[165]
Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med 2012; 2(4) a007161
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[166]
Chirkut S. Breast cancer, human immunodeficiency virus and highly active antiretroviral treatment; implications for a high-rate seropositive region. Oncol Rev 2019; 13(1): 376.
[http://dx.doi.org/10.4081/oncol.2019.376] [PMID: 30713605]
[167]
Hull MW, Montaner J. Antiretroviral therapy: a key component of a comprehensive HIV prevention strategy. Curr HIV/AIDS Rep 2011; 8(2): 85-93.
[http://dx.doi.org/10.1007/s11904-011-0076-6] [PMID: 21445551]
[168]
Tsai HC, Chen IT, Wu KS, et al. High rate of HIV-1 drug resistance in treatment failure patients in Taiwan, 2009-2014. Infect Drug Resist 2017; 10: 343-52.
[http://dx.doi.org/10.2147/IDR.S146584] [PMID: 29081666]
[169]
Oshikoya KA, Oreagba IA, Lawal S, et al. Potential drug-drug interactions in HIV-infected children on antiretroviral therapy in Lagos, Nigeria. HIV AIDS (Auckl) 2014; 6: 49-59.
[http://dx.doi.org/10.2147/HIV.S52266] [PMID: 24741328]
[170]
Buell KG, Chung C, Chaudhry Z, Puri A, Nawab K, Ravindran RP. Lifelong antiretroviral therapy or HIV cure: The benefits for the individual patient. AIDS Care 2016; 28(2): 242-6.
[http://dx.doi.org/10.1080/09540121.2015.1074653] [PMID: 26357912]
[171]
Pennings PS. HIV drug resistance: problems and perspectives. Infect Dis Rep 2013; 5(Suppl. 1). e5
[http://dx.doi.org/10.4081/idr.2013.s1.e5] [PMID: 24470969]
[172]
Desai M, Iyer G, Dikshit RK. Antiretroviral drugs: critical issues and recent advances. Indian J Pharmacol 2012; 44(3): 288-98.
[http://dx.doi.org/10.4103/0253-7613.96296] [PMID: 22701234]
[173]
Vitoria M, Rangaraj A, Ford N, Doherty M. Current and future priorities for the development of optimal HIV drugs. Curr Opin HIV AIDS 2019; 14(2): 143-9.
[http://dx.doi.org/10.1097/COH.0000000000000527] [PMID: 30562177]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy