Abstract

Background: Synthesis of metal oxides nanoparticles with specific morphology and size has become the subject of many experimental protocols. Biosynthesis of the nanoparticles using plants is more preferable than physical and chemical methods because of its environmental friendliness.

Objective: The purpose of this study was to report the potential for green synthesis of cerium oxide nanoparticles using plant extracts with a high content of phenolic metabolites.

Methods: We have synthesized the CeO2 nano- and microparticles using Petroselinum crispum aqueous extract. The particles were characterized by UV-visible spectroscopy, IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and dynamic light scattering analysis. For detection the reduction capacity of the extract the evaluation of total phenolic and flavonoid content as well as high-performance liquid chromatography-mass spectrometry (HPLC-MS) were performed. Biological activity of the particles was identified by bioluminescent tests and bio tests with Triticum vulgare.

Results: Testing on T. vulgare showed that biogenic cerium dioxide powders stimulated the growth of up to 5-11,4% relative to intact samples, significantly increased the length of the leaves of seedlings and the root length. When seedings were exposed to the biosynthesized CeO2 particles, the level of chlorophylls was more stable and even slightly higher than control. Noticeable protective properties of the biosynthesized CeO2 powder under oxidation conditions were observed on the plant T. vulgare after a brief exposure (from 4 to 24 h).

Conclusion: Thus, biogenic CeO2 can be potentially utilized in oxidative damage protection of agricultural plants.

Keywords: Cerium oxide nanoparticles, green synthesis, morphology, antiradical activity, cell viability, seed germination energy, bioluminescence.

Graphical Abstract

[1]
Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: a review. J Nanotechnol 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/510246]
[2]
Gowramma B, Keerthi U, Rafi M, Muralidhara Rao D. Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 2015; 5(2): 195-201.
[http://dx.doi.org/10.1007/s13205-014-0210-4] [PMID: 28324578]
[3]
Xiao Z, Yuan M, Yang B, Liu Z, Huang J, Sun D. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: investigation of the leading biomolecules. Chemosphere 2016; 150: 357-64.
[http://dx.doi.org/10.1016/j.chemosphere.2016.02.056] [PMID: 26921588]
[4]
Al-kalifawi EJ, Al-obodi EE, Al-saadi TM. Characterization of Cr2O3 nanoparticles prepared by using different plant extracts. Ajar 2017; 6(5): 026-32.
[5]
Saranya S, Eswari A, Gayathri E, Eswari S, Vijayarani K. Green synthesis of metallic nanoparticles using aqueous plant extract and their antibacterial activity. Int J Curr Microbiol Appl Sci 2017; 6(6): 1834-45.
[http://dx.doi.org/10.20546/ijcmas.2017.606.214]
[6]
Igwe OU, Ekebo ES. Biofabrication of cobalt nanoparticles using leaf extract of Chromolaena odorata and their potential antibacterial application. Res J Chem Sci 2018; 18(1): 11-7.
[7]
Milani N, McLaughlin MJ, Stacey SP, et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 2012; 60(16): 3991-8.
[http://dx.doi.org/10.1021/jf205191y] [PMID: 22480134]
[8]
Arumugam A, Karthikeyan C, Haja HAS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 2015; 49: 408-15.
[http://dx.doi.org/10.1016/j.msec.2015.01.042] [PMID: 25686966]
[9]
Arya A, Gangwar A, Singh SK, et al. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 2016; 11: 1159-73.
[PMID: 27069362]
[10]
Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications NPG Asia Mater 2014; 2014; 6(3): e90.
[http://dx.doi.org//10.1038/am.2013.88]
[11]
Dowding JM, Das S, Kumar A, et al. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 2013; 7(6): 4855-68.
[http://dx.doi.org/10.1021/nn305872d] [PMID: 23668322]
[12]
Malleshappa J, Nagabhushana H, Prashantha SC, et al. Ecofriendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex. J Alloys Compd 2014; 612: 425-34.
[http://dx.doi.org/10.1016/j.jallcom.2014.05.101]
[13]
Kannan SK, Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci 2014; 13(3)1450018
[http://dx.doi.org/10.1142/S0219581X14500185]
[14]
Santi M, Sarawuth L, Paveena L, Jutharatana K, Ekaphan S. Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn J Appl Phys 2014; 53(6S)06JG14
[http://dx.doi.org/10.7567/JJAP.53.06JG14]
[15]
Malleshappa J, Nagabhushana H, Kavyashree D, et al. Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties. Spectrochim Acta A Mol Biomol Spectrosc 2015; 145: 63-75.
[http://dx.doi.org/10.1016/j.saa.2015.02.075] [PMID: 25767989]
[16]
Maqbool Q, Nazar M, Naz S, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine 2016; 11: 5015-25.
[http://dx.doi.org/10.2147/IJN.S113508] [PMID: 27785011]
[17]
Maqbool Q. Green-synthesised cerium oxide nanostructures (CeO2-NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS). RSC Advances 2017; 7: 56575-85.
[http://dx.doi.org/10.1039/C7RA12082F]
[18]
Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta SK, Singh G. Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull 2017; 91: 98-107.
[http://dx.doi.org/10.1016/j.materresbull.2017.03.034]
[19]
Pandiyan N, Murugesan B, Sonamuthu J, Samayanan S, Mahalingam S. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: enhancement of its bio-medical properties. J Photochem Photobiol B 2018; 178: 481-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.036] [PMID: 29232572]
[20]
Vennila R, Banu HA, Kamaraj P, et al. A novel glucose sensor using green synthesized ag doped CeO2 nanoparticles. Mater Today 2018; 5(2): 8683-90.
[21]
Makarov VV, Makarova SS, Love AJ, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 2014; 30(20): 5982-8.
[http://dx.doi.org/10.1021/la5011924] [PMID: 24784347]
[22]
Kumar A, Ilavarasan R, Jayachandran T, Decaraman M, Aravindhan P. Phytochemicals investigation on a tropical plant in south India. PJN 2009; 8(1): 83-5.
[http://dx.doi.org/10.3923/pjn.2009.83.85]
[23]
Aiyegoro OA, Okoh AI. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement Altern Med 2010; 10: 21.
[http://dx.doi.org/10.1186/1472-6882-10-21] [PMID: 20470421]
[24]
Boxi M, Rajesh Y, Kumar V, Raja B, Praveen KM. Extraction, phytochemical screening and in-vitro evaluation of anti-oxidant properties of Commicarpus chinesis aqueous leaf extract. Int J Pharm Biosci 2010; 1: 537-47.
[25]
Singleton VL, Rossi JA. Colorunetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965; 16: 144-58.
[26]
Zhishen J, Zhishen J, Mengcheng T, Jiamming W. The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem 1999; 64: 555-9.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[27]
Trautvetter S, Koelling-speer I, Speer K. Confirmation of phenolic acids and flavonoids in honeys by UPLC-MS. Apidologie (Celle) 2009; 40: 140-50.
[http://dx.doi.org/10.1051/apido/2008072]
[28]
Binnemans K, Görller-Walrand C. On the color of the trivalent lanthanide ions. Chem Phys Lett 1995; 235: 163-74.
[http://dx.doi.org/10.1016/0009-2614(95)00126-O]
[29]
Wu NC, Shi EW, Zheng YQ, Li WJ. Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium(iv) oxide powders. J Am Ceram Soc 2002; 85(10): 2462-8.
[http://dx.doi.org/10.1111/j.1151-2916.2002.tb00481.x]
[30]
Tok AIY, Boey FYC, Dong Z, Sun X. Hydrothermal synthesis of CeO2 nanoparticles. J Mater Process Technol 2007; 190: 217-22.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.02.042]
[31]
Baranova EH, Lavrova GB, Baranova EN. Cytological methods of transmission electron microscopy in biotechnology processing and production of food from vegetable raw materials Agrarian University, Moscow Agricultural Academy K.A. Timiryazeva. Moscow: Publishing House of the RSAU-ICCA, 47 p.
[32]
Kosyan DB, Rusakova EA, Miroshnikov SA, et al. Comparative evaluation of the toxicity of iron and its oxides nanoparticles using Stylonchia mytilus. Aquacult Aquarium Conserv Legis 2015; 8(3): 453-60.
[33]
Lebedev SV, Korotkova AM, Osipova EA. Evaluation of the influence of FeO nanoparticles of iron, magnetite Fe3O4 nanoparticles, and iron (II) sulfate FeSO4 on the content of Triticum vulgare photosynthetic pigments. Plant Physiol 2015; 61(4): 603-8.
[34]
Korotkova AM, Lebedev SV, Kayumov FG, Sizova EA. Morphophysiological changes in wheat (Triticum vulgare L.) under the influence of metal nanoparticles (Fe, Cu, Ni) and their oxides (Fe3O4, CuO, NiO). Agric Biol 2017; 52(1): 172-82.
[35]
Jae-Hwan K, Park EY, Ha HK, et al. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas J Anim Sci 2016; 26(2): 288-98.
[36]
Ishiyama M, Miyazono Y, Kazumi Sasamoto K, Shiga M. Watersoluble tetrazolium salt compounds United States patent US 6,063,587, 2000 May 16.
[37]
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environmen. J Phys Chem B 2003; 107: 668-77.
[http://dx.doi.org/10.1021/jp026731y]
[38]
Pettinger NW, Williams RE, Chen J, Kohler B. Crystallization kinetics of cerium oxide nanoparticles formed by spontaneous, room-temperature hydrolysis of cerium(iv) ammonium nitrate in light and heavy water. Phys Chem Chem Phys 2017; 19(5): 3523-31.
[http://dx.doi.org/10.1039/C6CP08227K] [PMID: 28094375]
[39]
Phoka S, Laokul P, Swatsitang E, Vinich P, Seraphin S, Maensiri S. Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys 2009; 115(1): 423-8.
[http://dx.doi.org/10.1016/j.matchemphys.2008.12.031]
[40]
Jayakumar G, Irudayaraj AA, Raj AD. Particle size effect on the properties of cerium oxide (CeO2) nanoparticles synthesized by hydrothermal method. Mech Mater Sci Eng J 2017; 9(1): ff10.2412/ mmse.3.4.481ff.
[http://dx.doi.org/10.2412/mmse.3.4.481]
[41]
Reinhardt K, Winkler H. Cerium mischmetal, cerium alloys, and cerium compounds.Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH 2002; 7: 285-300.
[42]
Liu YH, Zuo JC, Ren XF, Yong L. Synthesis and character of cerium oxide (CeO2) nanoparticles by the precipitation method. Metabk 2014; 53(4): 463-5.
[43]
Farahmandjou M, Zarinkamar M. Synthesis of nano-sized ceria (CeO2) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology. J Ultrafine Grained Nanostructured Mater 2015; 48(1): 5-10.
[44]
Wang J, Li Z, Zhang S, et al. Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sens Actuators B Chem 2017; 255(1): 862-70.
[45]
Zamiri R, Ahangar HA, Kaushal A, et al. Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS One 2015; 10(4)e0122989
[http://dx.doi.org/10.1371/journal.pone.0122989] [PMID: 25910071]
[46]
Latha P, Prakash K, Karuthapandian S. Effective photodegradation of CR & MO dyes by morphologically controlled cerium oxide nanocubes under visible light illumination. Optik (Stuttg) 2018; 154: 242-50.
[http://dx.doi.org/10.1016/j.ijleo.2017.10.054]
[47]
Babitha KK, Sreedevi A, Priyanka KP, Sabu B, Varghese T. Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. Indian J Pure Appl Phy 2015; 53: 596-603.
[48]
Coates J. Interpretation of infrared spectra, a practical approach Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd 2000.
[49]
Gruszecki WI, Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 2005; 1740(2): 108-15.
[http://dx.doi.org/10.1016/j.bbadis.2004.11.015] [PMID: 15949676]
[50]
Zhao L, Peng B, Hernandez-Viezcas JA, et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 2012; 6(11): 9615-22.
[http://dx.doi.org/10.1021/nn302975u] [PMID: 23050848]
[51]
Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S. One step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp 2007; 301: 73-9.
[http://dx.doi.org/10.1016/j.colsurfa.2006.12.037]
[52]
Papay Z, Antal I. Study on the antioxidant activity during the formulation of biological active ingredient. Eur Sci J 2014; 3: 252-7.
[53]
Chaves DS, Frattani FS, Assafim M, de Almeida AP, de Zingali RB, Costa SS. Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat Prod Commun 2011; 6(7): 961-4.
[http://dx.doi.org/10.1177/1934578X1100600709] [PMID: 21834233]
[54]
Gadi D, Bnouham M, Aziz M, et al. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow. J Complement Integr Med 2012; 10(9): 19.
[55]
Pápay ZE, Kósa A, Boldizsár I, et al. Pharmaceutical and formulation aspects of Petroselinum crispum extract. Acta Pharm Hung 2012; 82(1): 3-14.
[PMID: 22570982]
[56]
Stan M, Soran ML, Varodi C, Lung I. Extraction and identification of flavonoids from Parsley extracts by HPLC analysis. AIP Conf Proc 2012; 1425: 50-2.
[http://dx.doi.org/10.1063/1.3681964]
[57]
Justesen U, Knuthsen P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 2001; 73: 245-50.
[http://dx.doi.org/10.1016/S0308-8146(01)00114-5]
[58]
Hempel J, Pforte H, Raab B, Engst W, Böhm H, Jacobasch G. Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Nahrung 1999; 43(3): 201-4.
[http://dx.doi.org/10.1002/(SICI)1521-3803(19990601)43:3<201:AID-FOOD201>3.0.CO;2-1] [PMID: 10399355]
[59]
Fejes S, Blázovics A, Lemberkovics E, Petri G. Sz’'oke E, Kéry A. Free radical scavenging and membrane protective effects of methanol extracts from Anthriscus cerefolium L. (Hoffm.) and Petroselinum crispum(Mill.). Phytother Res 2000; 14(5): 362-5.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<362:AID-PTR554>3.0.CO;2-G] [PMID: 10925404]
[60]
Peterson S, Lampe JW, Bammler TK, Gross-Steinmeyer K, Eaton DL. Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1. Food Chem Toxicol 2006; 44(9): 1474-84.
[http://dx.doi.org/10.1016/j.fct.2006.04.010] [PMID: 16762476]
[61]
Theivasanthi T, Alagar M. Electrolytic synthesis and characterization of silver nanopowder. Nano Biomed Eng 2012; 4(2): 58-65.
[http://dx.doi.org/10.5101/nbe.v4i2.p58-65]
[62]
de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 2012; 32(11): 867-79.
[http://dx.doi.org/10.1002/jat.2780] [PMID: 22696476]
[63]
Abbas F, Iqbal J, Jan T, et al. Differential cytotoxicity of ferromagnetic Co doped CeO2 nanoparticles against human neuroblastoma cancer cells. J Alloys Compd 2015; 648: 1060-6.
[http://dx.doi.org/10.1016/j.jallcom.2015.06.195]
[64]
Devipriya D, Roopan SM. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C 2017; 80(80): 38-44.
[http://dx.doi.org/10.1016/j.msec.2017.05.130] [PMID: 28866178]
[65]
Karakoti AS, Monteiro-Riviere NA, Aggarwal R, et al. Nanoceria as antioxidant: synthesis and biomedical applications JOM (1989) 2008; 60(3): 33-7.
[http://dx.doi.org/10.1007/s11837-008-0029-8] [PMID: 20617106]
[66]
Alili L, Sack M, von Montfort C, et al. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 2013; 19(8): 765-78.
[http://dx.doi.org/10.1089/ars.2012.4831] [PMID: 23198807]
[67]
Pulido-Reyes G, Rodea-Palomares I, Das S, et al. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep 2015; 5(1): 15613.
[http://dx.doi.org/10.1038/srep15613] [PMID: 26489858]
[68]
Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 2010; 46(16): 2736-8.
[http://dx.doi.org/10.1039/b922024k] [PMID: 20369166]
[69]
Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 2013; 8(9): 1483-508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[70]
Beaudoux X, Virot M, Chave T, et al. Ultrasound-assisted reductive dissolution of CeO2 and PuO2 in the presence of Ti particles. Dalton Trans 2016; 45(21): 8802-15.
[http://dx.doi.org/10.1039/C5DT04931H] [PMID: 27145713]

© 2024 Bentham Science Publishers | Privacy Policy