Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

From Receptor Selectivity to Functional Selectivity: The Rise of Biased Agonism in 5-HT1A Receptor Drug Discovery

Author(s): Joanna Sniecikowska, Adrian Newman-Tancredi and Marcin Kolaczkowski*

Volume 19, Issue 26, 2019

Page: [2393 - 2420] Pages: 28

DOI: 10.2174/1568026619666190911122040

Price: $65

Abstract

Despite extensive efforts to design serotonin 5-HT1A receptor compounds, there are currently no clinically available selective agonists to explore the therapeutic potential of activating this receptor. Commonly used drugs targeting 5-HT1A receptors, such as buspirone or other azapirone compounds, possess only limited selectivity over cross-reacting sites, act as partial agonists for 5-HT1A receptor activation, and are metabolically labile, generating active metabolites. In addition, drug discovery has been hampered by the multiplicity of 5-HT1A receptor subpopulations, expressed in different brain regions, that are coupled to distinct molecular signaling mechanisms and mediate a wide variety of physiological responses, both desired and undesired.

In this context, advances in 5-HT1A receptor drug discovery have attracted attention of novel ‘biased agonists’ that are selective, efficacious and preferentially target the brain regions that mediate therapeutic activity without triggering side effects. The prototypical first-in-class compound NLX-101 (a.k.a. F15599; 3-chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin- 1-yl]methanone), preferentially activates 5-HT1A receptors in cortical regions and exhibits potent, rapidacting and sustained antidepressant-like and procognitive properties in animal models.

Here the background has been reviewed that led to the discovery of the class of 1-(1-benzoylpiperidin-4- yl)methanamine derivatives, including NLX-101, as well as recent advances in discovery of novel 5-HT1A receptor biased agonists, notably aryloxyethyl derivatives of 1‑(1-benzoylpiperidin-4yl)methanamine which show promising pharmacological activity both in vitro and in vivo.

Overall, the results suggest that opportunities exist for innovative drug discovery of selective 5-HT1A receptor biased agonists that may open new avenues for the treatment of CNS disorders involving dysfunction of serotonergic neurotransmission.

Keywords: 5-HT1A receptor, Biased agonism, Functional selectivity, Receptor activation, Drug discovery, Serotonergic neurotransmission.

Graphical Abstract

[1]
Spencer, N.J.; Keating, D.J. Is there a role for Endogenous 5-HT in gastrointestinal motility? how recent studies have changed our understanding. Adv. Exp. Med. Biol., 2016, 891, 113-122.
[http://dx.doi.org/10.1007/978-3-319-27592-5_11] [PMID: 27379639]
[2]
Sinopoli, V.M.; Burton, C.L.; Kronenberg, S.; Arnold, P.D. A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci. Biobehav. Rev., 2017, 80, 372-381.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.029] [PMID: 28576508]
[3]
López-Giménez, J.F.; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr. Top. Behav. Neurosci., 2018, 36, 45-73.
[http://dx.doi.org/10.1007/7854_2017_478] [PMID: 28677096]
[4]
Deneris, E.; Gaspar, P. Serotonin neuron development: shaping molecular and structural identities. Wiley Interdiscip. Rev. Dev. Biol., 2018, 7(1)
[http://dx.doi.org/10.1002/wdev.301] [PMID: 29072810]
[5]
Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res., 2019, 140, 100-114.
[http://dx.doi.org/10.1016/j.phrs.2018.06.015] [PMID: 29953943]
[6]
Perrin, F.E.; Noristani, H.N. Serotonergic mechanisms in spinal cord injury. Exp. Neurol., 2019, 318, 174-191.
[http://dx.doi.org/10.1016/j.expneurol.2019.05.007] [PMID: 31085200]
[7]
Bardin, L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav. Pharmacol., 2011, 22(5-6), 390-404.
[http://dx.doi.org/10.1097/FBP.0b013e328349aae4] [PMID: 21808193]
[8]
Barnes, N.M.; Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology, 1999, 38(8), 1083-1152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[9]
Ohno, Y.; Shimizu, S.; Tokudome, K.; Kunisawa, N.; Sasa, M. New insight into the therapeutic role of the serotonergic system in Parkinson’s disease. Prog. Neurobiol., 2015, 134, 104-121.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.005] [PMID: 26455457]
[10]
Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain, 2017, 10(1), 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[11]
Żmudzka, E.; Sałaciak, K.; Sapa, J.; Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci., 2018, 210, 106-124.
[http://dx.doi.org/10.1016/j.lfs.2018.08.050] [PMID: 30144453]
[12]
Garnock-Jones, K.P.; McCormack, P.L. Escitalopram: a review of its use in the management of major depressive disorder in adults. CNS Drugs, 2010, 24(9), 769-796.
[http://dx.doi.org/10.2165/11204760-000000000-00000] [PMID: 20806989]
[13]
Meltzer, H.Y.; Massey, B.W.; Horiguchi, M. Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr. Pharm. Biotechnol., 2012, 13(8), 1572-1586.
[http://dx.doi.org/10.2174/138920112800784880] [PMID: 22283753]
[14]
Newman-Tancredi, A. The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr. Opin. Investig. Drugs, 2010, 11(7), 802-812.
[PMID: 20571976]
[15]
Barbanti, P.; Aurilia, C.; Egeo, G.; Fofi, L.; Palmirotta, R. Serotonin receptor targeted therapy for migraine treatment: an overview of drugs in phase I and II clinical development. Expert Opin. Investig. Drugs, 2017, 26(3), 269-277.
[http://dx.doi.org/10.1080/13543784.2017.1283404] [PMID: 28103158]
[16]
Bigal, M.E.; Krymchantowski, A.V.; Ho, T. Migraine in the triptan era: progresses achieved, lessons learned and future developments. Arq. Neuropsiquiatr., 2009, 67(2B), 559-569.
[http://dx.doi.org/10.1590/S0004-282X2009000300040] [PMID: 19623468]
[17]
Goadsby, P.J. Serotonin receptor ligands: treatments of acute migraine and cluster headache. Handb. Exp. Pharmacol., 2007, 177, 129-143.
[PMID: 17087122]
[18]
Villalón, C.M.; VanDenBrink, A.M. The role of 5-hydroxytryptamine in the pathophysiology of migraine and its relevance to the design of novel treatments. Mini Rev. Med. Chem., 2017, 17(11), 928-938.
[http://dx.doi.org/10.2174/1389557516666160728121050] [PMID: 27465216]
[19]
Albert, P.R.; Le François, B.; Vahid-Ansari, F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J. Psychiatry Neurosci., 2019, 44(3), 164-176.
[http://dx.doi.org/10.1503/jpn.180209] [PMID: 30807072]
[20]
Herrick-Davis, K. Functional significance of serotonin receptor dimerization. Exp. Brain Res., 2013, 230(4), 375-386.
[http://dx.doi.org/10.1007/s00221-013-3622-1] [PMID: 23811735]
[21]
Kobe, F.; Renner, U.; Woehler, A.; Wlodarczyk, J.; Papusheva, E.; Bao, G.; Zeug, A.; Richter, D.W.; Neher, E.; Ponimaskin, E. Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptors. Biochim. Biophys. Acta, 2008, 1783(8), 1503-1516.
[http://dx.doi.org/10.1016/j.bbamcr.2008.02.021] [PMID: 18381076]
[22]
Maroteaux, L.; Béchade, C.; Roumier, A. Dimers of serotonin receptors: Impact on ligand affinity and signaling. Biochimie, 2019, 161, 23-33.
[http://dx.doi.org/10.1016/j.biochi.2019.01.009] [PMID: 30685449]
[23]
Stamm, S.; Gruber, S.B.; Rabchevsky, A.G.; Emeson, R.B. The activity of the serotonin receptor 2C is regulated by alternative splicing. Hum. Genet., 2017, 136(9), 1079-1091.
[http://dx.doi.org/10.1007/s00439-017-1826-3] [PMID: 28664341]
[24]
Raymond, J.R.; Mukhin, Y.V.; Gettys, T.W.; Garnovskaya, M.N. The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br. J. Pharmacol., 1999, 127(8), 1751-1764.
[http://dx.doi.org/10.1038/sj.bjp.0702723] [PMID: 10482904]
[25]
Celada, P.; Puig, M.V.; Artigas, F. Serotonin modulation of cortical neurons and networks. Front. Integr. Nuerosci., 2013, 7, 25.
[http://dx.doi.org/10.3389/fnint.2013.00025]
[26]
Hensler, J.G.; Artigas, F.; Bortolozzi, A.; Daws, L.C.; De Deurwaerdère, P.; Milan, L.; Navailles, S.; Koek, W. Catecholamine/Serotonin interactions: systems thinking for brain function and disease. Adv. Pharmacol., 2013, 68, 167-197.
[http://dx.doi.org/10.1016/B978-0-12-411512-5.00009-9] [PMID: 24054145]
[27]
Millan, M.J.; Lejeune, F.; Gobert, A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J. Psychopharmacol. (Oxford), 2000, 14(2), 114-138.
[http://dx.doi.org/10.1177/026988110001400202] [PMID: 10890307]
[28]
Dueñas, H.; Lee, A.; Brnabic, A.J.M.; Chung, K-F.; Lai, C-H.; Badr, M.G.; Uy-Ponio, T.; Ruiz, J.R.; Varrey, P.; Jian, H.; Dossenbach, M. Frequency of treatment-emergent sexual dysfunction and treatment effectiveness during SSRI or duloxetine therapy: 8-week data from a 6-month observational study. Int. J. Psychiatry Clin. Pract., 2011, 15(2), 80-90.
[http://dx.doi.org/10.3109/13651501.2011.572169] [PMID: 22121855]
[29]
Morehouse, R.; Macqueen, G.; Kennedy, S.H. Barriers to achieving treatment goals: a focus on sleep disturbance and sexual dysfunction. J. Affect. Disord., 2011, 132(Suppl. 1), S14-S20.
[http://dx.doi.org/10.1016/j.jad.2011.03.047] [PMID: 21575992]
[30]
Bijl, D. The serotonin syndrome. Neth. J. Med., 2004, 62(9), 309-313.
[PMID: 15635814]
[31]
Gillman, P.K. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review. Headache, 2010, 50(2), 264-272.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01575.x] [PMID: 19925619]
[32]
Haberzettl, R.; Bert, B.; Fink, H.; Fox, M.A. Animal models of the serotonin syndrome: a systematic review. Behav. Brain Res., 2013, 256, 328-345.
[http://dx.doi.org/10.1016/j.bbr.2013.08.045] [PMID: 24004848]
[33]
Isbister, G.K.; Buckley, N.A. The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin. Neuropharmacol., 2005, 28(5), 205-214.
[http://dx.doi.org/10.1097/01.wnf.0000177642.89888.85] [PMID: 16239759]
[34]
Arvidsson, L.E.; Hacksell, U.; Nilsson, J.L.; Hjorth, S.; Carlsson, A.; Lindberg, P.; Sanchez, D.; Wikstrom, H. 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J. Med. Chem., 1981, 24(8), 921-923.
[http://dx.doi.org/10.1021/jm00140a002] [PMID: 6460101]
[35]
Gozlan, H.; El Mestikawy, S.; Pichat, L.; Glowinski, J.; Hamon, M. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature, 1983, 305(5930), 140-142.
[http://dx.doi.org/10.1038/305140a0] [PMID: 6225026]
[36]
Lacivita, E.; Leopoldo, M.; Berardi, F.; Perrone, R. 5-HT1A receptor, an old target for new therapeutic agents. Curr. Top. Med. Chem., 2008, 8(12), 1024-1034.
[http://dx.doi.org/10.2174/156802608785161385] [PMID: 18691130]
[37]
Lacivita, E.; Di Pilato, P.; De Giorgio, P.; Colabufo, N.A.; Berardi, F.; Perrone, R.; Leopoldo, M. The therapeutic potential of 5-HT1A receptors: a patent review. Expert Opin. Ther. Pat., 2012, 22(8), 887-902.
[http://dx.doi.org/10.1517/13543776.2012.703654] [PMID: 22788968]
[38]
Fiorino, F.; Severino, B.; Magli, E.; Ciano, A.; Caliendo, G.; Santagada, V.; Frecentese, F.; Perissutti, E. 5-HT(1A) receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J. Med. Chem., 2014, 57(11), 4407-4426.
[http://dx.doi.org/10.1021/jm400533t] [PMID: 24295064]
[39]
Staroń, J.; Bugno, R.; Hogendorf, A.S.; Bojarski, A.J. 5-HT1A receptor ligands and their therapeutic applications: review of new patents. Expert Opin. Ther. Pat., 2018, 28(9), 679-689.
[http://dx.doi.org/10.1080/13543776.2018.1514011] [PMID: 30124346]
[40]
Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assié, M-B.; Cosi, C.; Kleven, M. Novel derivatives of 2-pyridinemethylamine as selective, potent, and orally active agonists at 5-HT1A receptors. J. Med. Chem., 1999, 42(9), 1648-1660.
[http://dx.doi.org/10.1021/jm9806906] [PMID: 10229633]
[41]
Colpaert, F.C.; Tarayre, J.P.; Koek, W.; Pauwels, P.J.; Bardin, L.; Xu, X-J.; Wiesenfeld-Hallin, Z.; Cosi, C.; Carilla-Durand, E.; Assié, M.B.; Vacher, B. Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacology, 2002, 43(6), 945-958.
[http://dx.doi.org/10.1016/S0028-3908(02)00119-3] [PMID: 12423664]
[42]
Maurel, J.L.; Autin, J-M.; Funes, P.; Newman-Tancredi, A.; Colpaert, F.; Vacher, B. High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity. J. Med. Chem., 2007, 50(20), 5024-5033.
[http://dx.doi.org/10.1021/jm070714l] [PMID: 17803293]
[43]
Newman-Tancredi, A.; Martel, J-C.; Assié, M-B.; Buritova, J.; Lauressergues, E.; Cosi, C.; Heusler, P.; Bruins Slot, L.; Colpaert, F.C.; Vacher, B.; Cussac, D. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br. J. Pharmacol., 2009, 156(2), 338-353.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00001.x] [PMID: 19154445]
[44]
Martel, J-C.; Assié, M-B.; Bardin, L.; Depoortère, R.; Cussac, D.; Newman-Tancredi, A. 5-HT1A receptors are involved in the effects of xaliproden on G-protein activation, neurotransmitter release and nociception. Br. J. Pharmacol., 2009, 158(1), 232-242.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00249.x] [PMID: 19508400]
[45]
Assié, M-B.; Lomenech, H.; Ravailhe, V.; Faucillon, V.; Newman-Tancredi, A. Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Br. J. Pharmacol., 2006, 149(2), 170-178.
[http://dx.doi.org/10.1038/sj.bjp.0706859] [PMID: 16921393]
[46]
Colpaert, F.C.; Tarayre, J.P.; Koek, W.; Pauwels, P.J.; Bardin, L.; Xu, X-J.; Wiesenfeld-Hallin, Z.; Cosi, C.; Carilla-Durand, E.; Assié, M.B.; Vacher, B. Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacology, 2002, 43(6), 945-958.
[http://dx.doi.org/10.1016/S0028-3908(02)00119-3] [PMID: 12423664]
[47]
Koek, W.; Patoiseau, J.F.; Assié, M.B.; Cosi, C.; Kleven, M.S.; Dupont-Passelaigue, E.; Carilla-Durand, E.; Palmier, C.; Valentin, J.P.; John, G.; Pauwels, P.J.; Tarayre, J.P.; Colpaert, F.C.F.F. 11440, a potent, selective, high efficacy 5-HT1A receptor agonist with marked anxiolytic and antidepressant potential. J. Pharmacol. Exp. Ther., 1998, 287(1), 266-283.
[PMID: 9765347]
[48]
Koek, W.; Vacher, B.; Cosi, C.; Assié, M.B.; Patoiseau, J.F.; Pauwels, P.J.; Colpaert, F.C. 5-HT1A receptor activation and antidepressant-like effects: F 13714 has high efficacy and marked antidepressant potential. Eur. J. Pharmacol., 2001, 420(2-3), 103-112.
[http://dx.doi.org/10.1016/S0014-2999(01)01011-1] [PMID: 11408031]
[49]
Albert, P.R.; Vahid-Ansari, F.; Luckhart, C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci., 2014, 8, 199.
[http://dx.doi.org/10.3389/fnbeh.2014.00199] [PMID: 24936175]
[50]
Andrade, R.; Huereca, D.; Lyons, J.G.; Andrade, E.M.; McGregor, K.M. 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing. ACS Chem. Neurosci., 2015, 6(7), 1110-1115.
[http://dx.doi.org/10.1021/acschemneuro.5b00034] [PMID: 25913021]
[51]
Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs, 2013, 27(9), 703-716.
[http://dx.doi.org/10.1007/s40263-013-0071-0] [PMID: 23757185]
[52]
Artigas, F.; Adell, A.; Celada, P. Pindolol augmentation of antidepressant response. Curr. Drug Targets, 2006, 7(2), 139-147.
[http://dx.doi.org/10.2174/138945006775515446] [PMID: 16475955]
[53]
Celada, P.; Puig, M.; Amargós-Bosch, M.; Adell, A.; Artigas, F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci., 2004, 29(4), 252-265.
[PMID: 15309042]
[54]
Assié, M-B.; Ravailhe, V.; Faucillon, V.; Newman-Tancredi, A. Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J. Pharmacol. Exp. Ther., 2005, 315(1), 265-272.
[http://dx.doi.org/10.1124/jpet.105.087163] [PMID: 15987834]
[55]
Bortolozzi, A.; Masana, M.; Díaz-Mataix, L.; Cortés, R.; Scorza, M.C.; Gingrich, J.A.; Toth, M.; Artigas, F. Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors. Int. J. Neuropsychopharmacol., 2010, 13(10), 1299-1314.
[http://dx.doi.org/10.1017/S146114571000009X] [PMID: 20158933]
[56]
du Jardin, K.G.; Müller, H.K.; Elfving, B.; Dale, E.; Wegener, G.; Sanchez, C. Potential involvement of serotonergic signaling in ketamine’s antidepressant actions: A critical review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 27-38.
[http://dx.doi.org/10.1016/j.pnpbp.2016.05.007] [PMID: 27262695]
[57]
Fukumoto, K.; Iijima, M.; Funakoshi, T.; Chaki, S. Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine. Int. J. Neuropsychopharmacol., 2018, 21(4), 371-381.
[http://dx.doi.org/10.1093/ijnp/pyx116] [PMID: 29309585]
[58]
Santana, N.; Bortolozzi, A.; Serrats, J.; Mengod, G.; Artigas, F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex, 2004, 14(10), 1100-1109.
[http://dx.doi.org/10.1093/cercor/bhh070] [PMID: 15115744]
[59]
Dumuis, A.; Sebben, M.; Bockaert, J. Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol. Pharmacol., 1988, 33(2), 178-186.
[PMID: 2828913]
[60]
Cox, R.F.; Meller, E.; Waszczak, B.L. Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT1A agonists. Synapse, 1993, 14(4), 297-304.
[http://dx.doi.org/10.1002/syn.890140407] [PMID: 8248853]
[61]
Meller, E.; Goldstein, M.; Bohmaker, K. Receptor reserve for 5-hydroxytryptamine1A-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-hydroxytryptamine1A agonists. Mol. Pharmacol., 1990, 37(2), 231-237.
[PMID: 1968223]
[62]
Meller, E.; Bohmaker, K. Differential receptor reserve for 5-HT1A receptor-mediated regulation of plasma neuroendocrine hormones. J. Pharmacol. Exp. Ther., 1994, 271(3), 1246-1252.
[PMID: 7996433]
[63]
Yocca, F.D.; Iben, L.; Meller, E. Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes. Mol. Pharmacol., 1992, 41(6), 1066-1072.
[PMID: 1352034]
[64]
Mannoury la Cour, C.; El Mestikawy, S.; Hanoun, N.; Hamon, M.; Lanfumey, L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol. Pharmacol., 2006, 70(3), 1013-1021.
[http://dx.doi.org/10.1124/mol.106.022756] [PMID: 16772521]
[65]
Valdizán, E.M.; Castro, E.; Pazos, A. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Int. J. Neuropsychopharmacol., 2010, 13(7), 835-843.
[http://dx.doi.org/10.1017/S1461145709990940] [PMID: 19895724]
[66]
Evans, B.A.; Sato, M.; Sarwar, M.; Hutchinson, D.S.; Summers, R.J. Ligand-directed signalling at beta-adrenoceptors. Br. J. Pharmacol., 2010, 159(5), 1022-1038.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00602.x] [PMID: 20132209]
[67]
Tzingounis, A.V.; von Zastrow, M.; Yudowski, G.A. Beta-blocker drugs mediate calcium signaling in native central nervous system neurons by beta-arrestin-biased agonism. Proc. Natl. Acad. Sci. USA, 2010, 107(49), 21028-21033.
[http://dx.doi.org/10.1073/pnas.1004169107] [PMID: 21078978]
[68]
Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 638-653.
[http://dx.doi.org/10.1038/s41580-018-0049-3] [PMID: 30104700]
[69]
Berg, K.A.; Clarke, W.P. Development of functionally selective agonists as novel therapeutic agents. Drug Discov. Today Ther. Strateg., 2006, 3, 421-428.
[http://dx.doi.org/10.1016/j.ddstr.2006.10.017]
[70]
Kenakin, T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther., 2011, 336(2), 296-302.
[http://dx.doi.org/10.1124/jpet.110.173948] [PMID: 21030484]
[71]
Oleskevich, S.; Leck, K-J.; Matthaei, K.; Hendry, I.A. Enhanced serotonin response in the hippocampus of Galphaz protein knock-out mice. Neuroreport, 2005, 16(9), 921-925.
[http://dx.doi.org/10.1097/00001756-200506210-00009] [PMID: 15931062]
[72]
Raap, D.K.; Evans, S.; Garcia, F.; Li, Q.; Muma, N.A.; Wolf, W.A.; Battaglia, G.; Van De Kar, L.D. Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. J. Pharmacol. Exp. Ther., 1999, 288(1), 98-106.
[PMID: 9862759]
[73]
Gettys, T.W.; Fields, T.A.; Raymond, J.R. Selective activation of inhibitory G-protein alpha-subunits by partial agonists of the human 5-HT1A receptor. Biochemistry, 1994, 33(14), 4283-4290.
[http://dx.doi.org/10.1021/bi00180a024] [PMID: 8155646]
[74]
Newman-Tancredi, A.; Cussac, D.; Marini, L.; Millan, M.J. Antibody capture assay reveals bell-shaped concentration-response isotherms for h5-HT(1A) receptor-mediated Galpha(i3) activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol. Pharmacol., 2002, 62(3), 590-601.
[http://dx.doi.org/10.1124/mol.62.3.590] [PMID: 12181435]
[75]
Newman-Tancredi, A.; Cussac, D.; Ormière, A-M.; Lestienne, F.; Varney, M.A.; Martel, J-C. Bell-shaped agonist activation of 5-HT1A receptor-coupled Gαi3 G-proteins: Receptor density-dependent switch in receptor signaling. Cell. Signal., 2019, 63109383
[http://dx.doi.org/10.1016/j.cellsig.2019.109383] [PMID: 31376526]
[76]
Newman-Tancredi, A.; Martel, J-C.; Cosi, C.; Heusler, P.; Lestienne, F.; Varney, M.A.; Cussac, D. Distinctive in vitro signal transduction profile of NLX-112, a potent and efficacious serotonin 5-HT1A receptor agonist. J. Pharm. Pharmacol., 2017, 69(9), 1178-1190.
[http://dx.doi.org/10.1111/jphp.12762] [PMID: 28612503]
[77]
Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L. Selective serotonin 5-HT1A receptor biased agonists elicit distinct brain activation patterns: a pharmacoMRI study. Sci. Rep., 2016, 6, 26633.
[http://dx.doi.org/10.1038/srep26633] [PMID: 27211078]
[78]
Levigoureux, E.; Vidal, B.; Fieux, S.; Bouillot, C.; Emery, S.; Newman-Tancredi, A.; Zimmer, L. Serotonin 5-HT1A receptor biased agonists induce different cerebral metabolic responses: A [18F]FDG pet study in conscious and anesthetized rats. ACS Chem. Neurosci., 2018, 10(7), 3108-3119.
[http://dx.doi.org/10.1021/acschemneuro.8b00584]
[79]
Newman-Tancredi, A. biased agonism at serotonin 5HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry (London), 2011, 1(2), 149-164.
[http://dx.doi.org/10.2217/npy.11.12]
[80]
Van Goethem, N.P.; Schreiber, R.; Newman-Tancredi, A.; Varney, M.; Prickaerts, J. Divergent effects of the ‘biased’ 5-HT1 A receptor agonists F15599 and F13714 in a novel object pattern separation task. Br. J. Pharmacol., 2015, 172(10), 2532-2543.
[http://dx.doi.org/10.1111/bph.13071] [PMID: 25572672]
[81]
Rodríguez-Espigares, I.; Kaczor, A.A.; Stepniewski, T.M.; Selent, J. Challenges and opportunities in drug discovery of biased ligands. Methods Mol. Biol., 2018, 1705, 321-334.
[http://dx.doi.org/10.1007/978-1-4939-7465-8_14] [PMID: 29188569]
[82]
Rankovic, Z.; Brust, T.F.; Bohn, L.M. Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett., 2016, 26(2), 241-250.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.024] [PMID: 26707396]
[83]
Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assié, M.B.; Cosi, C. Design and synthesis of a series of 6-substituted-2-pyridinylmethylamine derivatives as novel, high-affinity, selective agonists at 5-HT1A receptors. J. Med. Chem., 1998, 41(25), 5070-5083.
[http://dx.doi.org/10.1021/jm9804329] [PMID: 9836623]
[84]
Blier, P. The pharmacology of putative early-onset antidepressant strategies. Eur. Neuropsychopharmacol., 2003, 13(2), 57-66.
[http://dx.doi.org/10.1016/S0924-977X(02)00173-6] [PMID: 12650947]
[85]
Osman, R.; Topiol, S.; Rubenstein, L.; Weinstein, H. A molecular model for activation of a 5-hydroxytryptamine receptor. Mol. Pharmacol., 1987, 32(5), 699-705.
[PMID: 2824984]
[86]
Pardo, L.; Weinstein, H. On the structure and activity of membrane receptors: A computational simulation of ligand-triggered activation in a model 5-HT1A receptor. Int. J. Quantum Chem., 1997, 63, 767-780.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)63:3<767:AID-QUA17>3.0.CO;2-1]
[87]
Wacker, D.; Wang, C.; Katritch, V.; Han, G.W.; Huang, X-P.; Vardy, E.; McCorvy, J.D.; Jiang, Y.; Chu, M.; Siu, F.Y.; Liu, W.; Xu, H.E.; Cherezov, V.; Roth, B.L.; Stevens, R.C. Structural features for functional selectivity at serotonin receptors. Science, 2013, 340(6132), 615-619.
[http://dx.doi.org/10.1126/science.1232808] [PMID: 23519215]
[88]
Bucki, A.; Marcinkowska, M.; Śniecikowska, J.; Więckowski, K.; Pawłowski, M.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Pytka, K.; Jastrzębska-Więsek, M.; Partyka, A.; Wesołowska, A.; Mierzejewski, P.; Kołaczkowski, M. Novel 3-(1,2,3,6-Tetrahydropyridin-4-yl)-1H-indole-Based Multifunctional Ligands with Antipsychotic-Like, Mood-Modulating, and Procognitive Activity. J. Med. Chem., 2017, 60(17), 7483-7501.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00839] [PMID: 28763213]
[89]
Bigg, D.; Castan, F.; Koek, W.; Bonnaud, B. Novel Heterocyclic aminomethyl-4 piperidine derivatives. their preparation and application in therapy., WO1994018193A1, August 18, 1994.
[90]
Mokrosz, J.L.; Dereń-Wesołek, A.; Tatarczyńska, E.; Duszyńska, B.; Bojarski, A.J.; Mokrosz, M.J.; Chojnacka-Wójcik, E. 8-[4-[2-(1,2,3,4-Tetrahydroisoquinolinyl]butyl-8-azaspiro[4.5]decane-7,9-dione: a new 5-HT1A receptor ligand with the same activity profile as buspirone. J. Med. Chem., 1996, 39(5), 1125-1129.
[http://dx.doi.org/10.1021/jm950662c] [PMID: 8676348]
[91]
Chen, H.; de Groot, M.J.; Vermeulen, N.P.E.; Hanzlik, R.P. Oxidative N-Dealkylation of p-Cyclopropyl-N,N-dimethylaniline. A substituent effect on a radical-clock reaction rationalized by ab initio calculations on radical cation intermediates. J. Org. Chem., 1997, 62(23), 8227-8230.
[http://dx.doi.org/10.1021/jo9709209] [PMID: 11671940]
[92]
Castro, J.L.; Collins, I.; Russell, M.G.; Watt, A.P.; Sohal, B.; Rathbone, D.; Beer, M.S.; Stanton, J.A. Enhancement of oral absorption in selective 5-HT1D receptor agonists: fluorinated 3-[3-(piperidin-1-yl)propyl]indoles. J. Med. Chem., 1998, 41(15), 2667-2670.
[http://dx.doi.org/10.1021/jm980204e] [PMID: 9667955]
[93]
Berendsen, H.H.; Jenck, F.; Broekkamp, C.L. Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol. Biochem. Behav., 1989, 33(4), 821-827.
[http://dx.doi.org/10.1016/0091-3057(89)90477-2] [PMID: 2533357]
[94]
Schlosser, M.; Michel, D. About the “physiological size” of fluorine substituents: comparison of sensorially active compounds with fluorine and methyl substituted analogues. Tetrahedron, 1996, 52, 99-108.
[http://dx.doi.org/10.1016/0040-4020(95)00886-D]
[95]
Cardozo, M.G.; Kawai, T.; Iimura, Y.; Sugimoto, H.; Yamanishi, Y.; Hopfinger, A.J. Conformational analyses and molecular-shape comparisons of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase. J. Med. Chem., 1992, 35(3), 590-601.
[http://dx.doi.org/10.1021/jm00081a023] [PMID: 1738152]
[96]
Vogel, H. Drug Discovery and Evaluation: Pharmacological Assays; Springer-Verlag Berlin Heidelberg: Germany, 2007.
[97]
Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol., 1978, 47(4), 379-391.
[http://dx.doi.org/10.1016/0014-2999(78)90118-8] [PMID: 204499]
[98]
Newman-Tancredi, A. biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry (London), 2011, 1, 149-164.
[http://dx.doi.org/10.2217/npy.11.12]
[99]
Bollinger, S.; Hübner, H.; Heinemann, F.W.; Meyer, K.; Gmeiner, P. Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists. J. Med. Chem., 2010, 53(19), 7167-7179.
[http://dx.doi.org/10.1021/jm100835q] [PMID: 20860381]
[100]
Rankovic, Z. CNS Physicochemical property space shaped by a diverse set of molecules with experimentally determined exposure in the mouse brain. J. Med. Chem., 2017, 60(14), 5943-5954.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01469] [PMID: 28388050]
[101]
Buritova, J.; Berrichon, G.; Cathala, C.; Colpaert, F.; Cussac, D. Region-specific changes in 5-HT1A agonist-induced extracellular signal-regulated kinases 1/2 phosphorylation in rat brain: a quantitative ELISA study. Neuropharmacology, 2009, 56(2), 350-361.
[http://dx.doi.org/10.1016/j.neuropharm.2008.09.004] [PMID: 18809418]
[102]
Lladó-Pelfort, L.; Assié, M-B.; Newman-Tancredi, A.; Artigas, F.; Celada, P. Preferential in vivo action of F15599, a novel 5-HT(1A) receptor agonist, at postsynaptic 5-HT(1A) receptors. Br. J. Pharmacol., 2010, 160(8), 1929-1940.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00738.x] [PMID: 20649591]
[103]
Lladó-Pelfort, L.; Assié, M-B.; Newman-Tancredi, A.; Artigas, F.; Celada, P. In vivo electrophysiological and neurochemical effects of the selective 5-HT1A receptor agonist, F13640, at pre- and postsynaptic 5-HT1A receptors in the rat. Psychopharmacology (Berl.), 2012, 221(2), 261-272.
[http://dx.doi.org/10.1007/s00213-011-2569-9] [PMID: 22147258]
[104]
Vidal, B.; Fieux, S.; Redouté, J.; Villien, M.; Bonnefoi, F.; Le Bars, D.; Newman-Tancredi, A.; Costes, N.; Zimmer, L. In vivo biased agonism at 5-HT1A receptors: characterisation by simultaneous PET/MR imaging. Neuropsychopharmacology, 2018, 43(11), 2310-2319.
[http://dx.doi.org/10.1038/s41386-018-0145-2] [PMID: 30030540]
[105]
Colom, M.; Costes, N.; Redouté, J.; Dailler, F.; Gobert, F.; Le Bars, D.; Billard, T.; Newman-Tancredi, A.; Zimmer, L. 18F-F13640 PET imaging of functional receptors in humans. Eur. J. Nucl. Med. Mol. Imaging, 2019.
[http://dx.doi.org/10.1007/s00259-019-04473-7] [PMID: 31414208]
[106]
Assié, M-B.; Bardin, L.; Auclair, A.L.; Carilla-Durand, E.; Depoortère, R.; Koek, W.; Kleven, M.S.; Colpaert, F.; Vacher, B.; Newman-Tancredi, A. F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int. J. Neuropsychopharmacol., 2010, 13(10), 1285-1298.
[http://dx.doi.org/10.1017/S1461145709991222] [PMID: 20059805]
[107]
Depoortère, R.; Papp, M.; Gruca, P.; Lason-Tyburkiewicz, M.; Niemczyk, M.; Varney, M.A.; Newman-Tancredi, A. Cortical 5-hydroxytryptamine 1a receptor biased agonist, nlx-101, displays rapid-acting antidepressant-like properties in the rat chronic mild stress model. J. Psychopharmacol., 2019, 33(11), 1456-1466.
[http://dx.doi.org/10.1177/0269881119860666]
[108]
Hagen, B.V.; Goethem, N.P.V.; Schreiber, R.; Newman-Tancredi, A. In: P.2.015 Chronic effects of ‘biased’ 5-HT1A receptor agonists on object pattern separation performance and hippocampal plasticity, European Neuropsychopharmacology, Nice, France, March 2016, 26(1):S36-S37. (Accessed on Jun 25, 2019 at: https://www.researchgate.net/publication/307952005_P2015_Chronic_effects_of_%27biased%27_5-HT1A_receptor_agonists_on_object_pattern_separation_performance_and_hippocampal_plasticity
[http://dx.doi.org/10.1016/S0924-977X(16)70041-1]
[109]
Depoortère, R.; Auclair, A.L.; Bardin, L.; Colpaert, F.C.; Vacher, B.; Newman-Tancredi, A. F15599, a preferential post-synaptic 5-HT1A receptor agonist: activity in models of cognition in comparison with reference 5-HT1A receptor agonists. Eur. Neuropsychopharmacol., 2010, 20(9), 641-654.
[http://dx.doi.org/10.1016/j.euroneuro.2010.04.005] [PMID: 20488670]
[110]
Lemoine, L.; Verdurand, M.; Vacher, B.; Blanc, E.; Le Bars, D.; Newman-Tancredi, A.; Zimmer, L. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(3), 594-605.
[http://dx.doi.org/10.1007/s00259-009-1274-y] [PMID: 19789870]
[111]
Stroth, N.; Niso, M.; Colabufo, N.A.; Perrone, R.; Svenningsson, P.; Lacivita, E.; Leopoldo, M. Arylpiperazine agonists of the serotonin 5-HT1A receptor preferentially activate cAMP signaling versus recruitment of β-arrestin-2. Bioorg. Med. Chem., 2015, 23(15), 4824-4830.
[http://dx.doi.org/10.1016/j.bmc.2015.05.042] [PMID: 26081758]
[112]
Sniecikowska, J.; Gluch-Lutwin, M.; Bucki, A.; Więckowska, A.; Siwek, A.; Jastrzebska-Wiesek, M.; Partyka, A.; Wilczyńska, D.; Pytka, K.; Pociecha, K.; Cios, A.; Wyska, E.; Wesołowska, A.; Pawłowski, M.; Varney, M.A.; Newman-Tancredi, A.; Kolaczkowski, M. Novel Aryloxyethyl derivatives of 1-(1-Benzoylpiperidin-4-yl)methanamine as the Extracellular Regulated Kinases 1/2 (ERK1/2) phosphorylation-preferring serotonin 5-ht1a receptor-Biased agonists with robust antidepressant-like activity. J. Med. Chem., 2019, 62(5), 2750-2771.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00062] [PMID: 30721053]
[113]
Gigliucci, V.; O’Dowd, G.; Casey, S.; Egan, D.; Gibney, S.; Harkin, A. Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology (Berl.), 2013, 228(1), 157-166.
[http://dx.doi.org/10.1007/s00213-013-3024-x] [PMID: 23455595]
[114]
Nygaard, R.; Frimurer, T.M.; Holst, B.; Rosenkilde, M.M.; Schwartz, T.W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci., 2009, 30(5), 249-259.
[http://dx.doi.org/10.1016/j.tips.2009.02.006] [PMID: 19375807]
[115]
Perrone, R.; Berardi, F.; Colabufo, N.A.; Leopoldo, M.; Lacivita, E.; Tortorella, V.; Leonardi, A.; Poggesi, E.; Testa, R. -4-[4-(Methoxyphenyl)cyclohexyl]-1-arylpiperazines: a new class of potent and selective 5-HT(1A) receptor ligands as conformationally constrained analogues of 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1-arylpiperazines. J. Med. Chem., 2001, 44(25), 4431-4442.
[http://dx.doi.org/10.1021/jm010866v] [PMID: 11728188]
[116]
Perrone, R.; Berardi, F.; Colabufo, N.A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. High affinity and selectivity on 5-HT1A receptor of 1-aryl-4-[1-tetralin)alkyl]piperazines. 2. J. Med. Chem., 1995, 38(6), 942-949.
[http://dx.doi.org/10.1021/jm00006a013] [PMID: 7699710]
[117]
Brust, T.F.; Hayes, M.P.; Roman, D.L.; Burris, K.D.; Watts, V.J. Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. J. Pharmacol. Exp. Ther., 2015, 352(3), 480-493.
[http://dx.doi.org/10.1124/jpet.114.220293] [PMID: 25539635]
[118]
Griffin, M.T.; Figueroa, K.W.; Liller, S.; Ehlert, F.J. Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o,Gs, and G15. J. Pharmacol. Exp. Ther., 2007, 321(3), 1193-1207.
[http://dx.doi.org/10.1124/jpet.107.120857] [PMID: 17392404]
[119]
Ehlert, F.J. On the analysis of ligand-directed signaling at G protein-coupled receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 377(4-6), 549-577.
[http://dx.doi.org/10.1007/s00210-008-0260-4] [PMID: 18253722]
[120]
Rajagopal, S.; Ahn, S.; Rominger, D.H.; Gowen-MacDonald, W.; Lam, C.M.; Dewire, S.M.; Violin, J.D.; Lefkowitz, R.J. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol., 2011, 80(3), 367-377.
[http://dx.doi.org/10.1124/mol.111.072801] [PMID: 21610196]
[121]
Fernandes, A.; Li, Y-W. Focused microwave irradiation-assisted immunohistochemistry to study effects of ketamine on phospho-ERK expression in the mouse brain. Brain Res., 2017, 1670, 86-95.
[http://dx.doi.org/10.1016/j.brainres.2017.05.008] [PMID: 28501494]
[122]
Lepack, A.E.; Bang, E.; Lee, B.; Dwyer, J.M.; Duman, R.S. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology, 2016, 111, 242-252.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.011] [PMID: 27634096]
[123]
Réus, G.Z.; Vieira, F.G.; Abelaira, H.M.; Michels, M.; Tomaz, D.B.; dos Santos, M.A.B.; Carlessi, A.S.; Neotti, M.V.; Matias, B.I.; Luz, J.R.; Dal-Pizzol, F.; Quevedo, J. MAPK signaling correlates with the antidepressant effects of ketamine. J. Psychiatr. Res., 2014, 55, 15-21.
[http://dx.doi.org/10.1016/j.jpsychires.2014.04.010] [PMID: 24819632]
[124]
Jastrzębska-Więsek, M. Partyka, A.; Rychtyk, J.; Śniecikowska, J.; Kołaczkowski, M.; Wesołowska, A.; Varney, M.A.; Newman-Tancredi, A. Activity of serotonin 5-HT1Areceptor biased agonists in rat: anxiolytic and antidepressant-like properties. ACS Chem. Neurosci., 2018, 9(5), 1040-1050.
[http://dx.doi.org/10.1021/acschemneuro.7b00443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy