General Review Article

部分重编程作为安全诱导细胞生成和再生的新兴策略

卷 19, 期 4, 2019

页: [248 - 254] 页: 7

弟呕挨: 10.2174/1566523219666190902154511

价格: $65

摘要

常规的细胞重编程涉及将体细胞系转化为诱导性多能干细胞(iPSC),随后可以将其重新分化为特定的体细胞类型。或者,部分细胞重编程通过多能性基因的瞬时表达将体细胞转化为其他体细胞类型,从而产生保留其原始细胞身份但对特定分化因子的适当混合物有反应的中间体。另外,通过部分细胞重编程的生物复兴是新兴的研究途径。 目的:在这里,我们将简要回顾新兴的信息,这些信息指出部分重编程是绕过细胞去分化的一种实现细胞重编程和复兴的合适策略。 方法:在这种情况下,可调节的多能性基因表达系统是目前最广泛用于实现部分细胞重编程的系统。例如,我们构建了表达绿色荧光蛋白和oct4,sox2,klf4和c-myc基因(称为Yamanaka基因或OSKM)的可调节双向腺载体。 结果:部分细胞重编程已用于将成纤维细胞重编程为心肌细胞,神经祖细胞和神经干细胞。通过使用转基因小鼠和分别表达由可调节启动子控制的OSKM基因的细胞,在体内和细胞培养中都已经实现了通过循环部分重编程进行的复兴。 结论:部分重编程是无iPSC诱导的具有治疗价值的体细胞的起源,以及用于实现体内和体外复兴,保持细胞类型同一性的强大工具。

关键词: 部分重编程,多能性,细胞身份,复兴,iPSC,体细胞。

图形摘要

[1]
Gurdon JB. From nuclear transfer to nuclear reprogramming: The reversal of cell differentiation. Annu Rev Cell Dev Biol 2006; 22: 1-22.
[http://dx.doi.org/10.1146/annurev.cellbio.22.090805.140144] [PMID: 16704337]
[2]
Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10: 622-40.
[PMID: 13951335]
[3]
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385(6619): 810-3.
[http://dx.doi.org/10.1038/385810a0] [PMID: 9039911]
[4]
Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415(6875): 1035-8.
[http://dx.doi.org/10.1038/nature718] [PMID: 11875572]
[5]
Meng L, Ely JJ, Stouffer RL, Wolf DP. Rhesus monkeys produced by nuclear transfer. Biol Reprod 1997; 57(2): 454-9.
[http://dx.doi.org/10.1095/biolreprod57.2.454] [PMID: 9241063]
[6]
Grisham J. Pigs cloned for first time. Nat Biotechnol 2000; 18(4): 365-7.
[http://dx.doi.org/10.1038/74335] [PMID: 10748477]
[7]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[8]
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40: 168-81.
[http://dx.doi.org/10.1016/j.arr.2017.09.002] [PMID: 28903069]
[9]
López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology 2017; 63(5): 426-31.
[http://dx.doi.org/10.1159/000477209] [PMID: 28538216]
[10]
Okano H, Nakamura M, Yoshida K, et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 2013; 112(3): 523-33.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.256149] [PMID: 23371901]
[11]
Miura K, Okada Y, Aoi T, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009; 27(8): 743-5.
[http://dx.doi.org/10.1038/nbt.1554] [PMID: 19590502]
[12]
Kim J, Ambasudhan R, Ding S. Direct lineage reprogramming to neural cells. Curr Opin Neurobiol 2012; 22(5): 778-84.
[http://dx.doi.org/10.1016/j.conb.2012.05.001] [PMID: 22652035]
[13]
Kim SM, Flaßkamp H, Hermann A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc 2014; 9(4): 871-81.
[http://dx.doi.org/10.1038/nprot.2014.056] [PMID: 24651499]
[14]
Kim J, Efe JA, Zhu S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA 2011; 108(19): 7838-43.
[http://dx.doi.org/10.1073/pnas.1103113108] [PMID: 21521790]
[15]
Efe JA, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011; 13(3): 215-22.
[http://dx.doi.org/10.1038/ncb2164] [PMID: 21278734]
[16]
Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circ Res 2013; 112(3): 562-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.249235] [PMID: 23371904]
[17]
Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008; 2(3): 230-40.
[http://dx.doi.org/10.1016/j.stem.2008.02.001] [PMID: 18371448]
[18]
Brambrink T, Foreman R, Welstead GG, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008; 2(2): 151-9.
[http://dx.doi.org/10.1016/j.stem.2008.01.004] [PMID: 18371436]
[19]
Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009; 462(7273): 595-601.
[http://dx.doi.org/10.1038/nature08592] [PMID: 19898493]
[20]
Artyomov MN, Meissner A, Chakraborty AK. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency. PLOS Comput Biol 2010; 6(5)e1000785
[http://dx.doi.org/10.1371/journal.pcbi.1000785] [PMID: 20485562]
[21]
Guo L, Karoubi G, Duchesneau P, et al. Generation of induced progenitor-like cells from mature epithelial cells using interrupted reprogramming. Stem Cell Reports 2017; 9(6): 1780-95.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.022] [PMID: 29198829]
[22]
Maza I, Caspi I, Zviran A, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol 2015; 33(7): 769-74.
[http://dx.doi.org/10.1038/nbt.3270] [PMID: 26098448]
[23]
Bar-Nur O, Verheul C, Sommer AG, et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol 2015; 33(7): 761-8.
[http://dx.doi.org/10.1038/nbt.3247] [PMID: 26098450]
[24]
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51(6): 987-1000.
[http://dx.doi.org/10.1016/0092-8674(87)90585-X] [PMID: 3690668]
[25]
Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142(3): 375-86.
[http://dx.doi.org/10.1016/j.cell.2010.07.002] [PMID: 20691899]
[26]
Sancho-Martinez I, Baek SH, Izpisua BJC. Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 2012; 14(9): 892-9.
[http://dx.doi.org/10.1038/ncb2567] [PMID: 22945254]
[27]
Mertens J, Paquola ACM, Ku M, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015; 17(6): 705-18.
[http://dx.doi.org/10.1016/j.stem.2015.09.001] [PMID: 26456686]
[28]
Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 2013; 502(7471): 340-5.
[http://dx.doi.org/10.1038/nature12586] [PMID: 24025773]
[29]
Ohnishi K, Semi K, Yamamoto T, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 2014; 156(4): 663-77.
[http://dx.doi.org/10.1016/j.cell.2014.01.005] [PMID: 24529372]
[30]
Ocampo A, Reddy P, Martinez-Redondo P, et al. In vivo amelioration of age- associated hallmarks by partial reprogramming. Cell 2016; 167(7): 1719-33.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.052] [PMID: 27984723]
[31]
de Lázaro I, Cossu G, Kostarelos K. Transient transcription factor (OSKM) expression is key towards clinical translation of in vivo cell reprogramming. EMBO Mol Med 2017; 9(6): 733-6.
[http://dx.doi.org/10.15252/emmm.201707650] [PMID: 28455313]
[32]
Olova N, Simpson DJ, Marioni RE, Chandra T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell 2019; 18(1)e12877
[http://dx.doi.org/10.1111/acel.12877] [PMID: 30450724]
[33]
Tamanini S, Comi GP, Corti S. In vivo transient and partial cell reprogramming to pluripotency as a therapeutic tool for neurodegenerative diseases. Mol Neurobiol 2018; 55(8): 6850-62.
[http://dx.doi.org/10.1007/s12035-018-0888-0] [PMID: 29353456]
[34]
Göbel C, Goetzke R, Eggermann T, Wagner W. Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep 2018; 8(1): 11676.
[http://dx.doi.org/10.1038/s41598-018-30069-6] [PMID: 30076334]
[35]
Lu Y, Krishnan A, Brommer B, et al. Reversal of ageing- and injury-induced vision loss by Tet-dependent; epigenetic reprogramming. Available from:https://www.biorxiv.org/content/10.1101/710210v1
[http://dx.doi.org/10.1101/710210]
[36]
Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27(11): 2667-74.
[http://dx.doi.org/10.1002/stem.201] [PMID: 19697349]
[37]
Oka K, Chan L. Helper-dependent adenoviral vectors. Curr Protoc Mol Biol 2005; Chapter 16: 16.24.
[38]
Lehmann M, Canatelli-Mallat M, Chiavellini P, et al. Regulatable adenovector harboring the GFP and Yamanaka genes for implementing regenerative medicine in the brain. Gene Ther (in press)
[http://dx.doi.org/10.1038/s41434-019-0063-x] [PMID: 30770896]
[39]
Lu KH, Hopper BR, Vargo TM, Yen SS. Chronological changes in sex steroid, gonadotropin and prolactin secretions in aging female rats displaying different reproductive states. Biol Reprod 1979; 21(1): 193-203.
[http://dx.doi.org/10.1095/biolreprod21.1.193] [PMID: 573635]
[40]
Goya RG, Lu JKH, Meites J. Gonadal function in aging rats and its relation to pituitary and mammary pathology. Mech Ageing Dev 1990; 56(1): 77-88.
[http://dx.doi.org/10.1016/0047-6374(90)90116-W] [PMID: 2259256]
[41]
Sánchez HL, Silva LB, Portiansky EL, Goya RG, Zuccolilli GO. Impact of very old age on hypothalamic dopaminergic neurons in the female rat: A morphometric study. J Comp Neurol 2003; 458(4): 319-25.
[http://dx.doi.org/10.1002/cne.10564] [PMID: 12619067]
[42]
Sarkar DK, Gottschall PE, Meites J. Damage to hypothalamic dopaminergic neurons is associated with development of prolactin-secreting pituitary tumors. Science 1982; 218(4573): 684-6.
[http://dx.doi.org/10.1126/science.7134966] [PMID: 7134966]
[43]
Hereñú CB, Cristina C, Rimoldi OJ, et al. Restorative effect of insulin-like growth factor-I gene therapy in the hypothalamus of senile rats with dopaminergic dysfunction. Gene Ther 2007; 14(3): 237-45.
[http://dx.doi.org/10.1038/sj.gt.3302870] [PMID: 16988717]
[44]
Schwerdt JI, López-León M, Console GM, et al. Rejuvenating effect of long-term IGF-I gene therapy in the hypothalamus of aged rats with dopaminergic dysfunction. Rejuvenation Res 2018; 21: 102-8.
[http://dx.doi.org/10.1089/rej.2017.1935] [PMID: 28673122]
[45]
Morel GR, Sosa YE, Bellini MJ, et al. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats. Neuroscience 2010; 167(3): 946-53.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.053] [PMID: 20219648]
[46]
Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: Achievements and therapeutic potential. Curr Gene Ther 2012; 12(2): 116-26.
[http://dx.doi.org/10.2174/156652312800099616] [PMID: 22348552]
[47]
Smolders S, Kessels S, Smolders SM, et al. Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods 2018; 293: 169-73.
[http://dx.doi.org/10.1016/j.jneumeth.2017.09.017] [PMID: 28970164]
[48]
Venero JL, Burguillos MA. Magnetofection as a new tool to study microglia biology. Neural Regen Res 2019; 14(5): 767-8.
[http://dx.doi.org/10.4103/1673-5374.249221] [PMID: 30688259]
[49]
Czugala M, Mykhaylyk O, Böhler P, et al. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles. Nanomedicine (Lond) 2016; 11(14): 1787-800.
[http://dx.doi.org/10.2217/nnm-2016-0144] [PMID: 27388974]
[50]
Pereyra AS, Mykhaylyk O, Lockhart EF, et al. Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells. J Nanomed Nanotechnol 2016; 7(2): 1-11.
[PMID: 27274908]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy