[3]
Clark, J.H.; Macquarrie, D.J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem. Commun. (Camb.), 1998, 853-860.
[4]
Saluzzo, C.; Ter Halle, R.; Touchard, F.; Fache, F.; Schulz, E.; Lemaire, M. Recent progress in asymmetric heterogeneous catalysis: Use of polymer-supported catalysts. J. Organomet. Chem., 2000, 603, 30-39.
[5]
Pal, N.; Bhaumik, A. Mesoporous materials: Versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv., 2015, 5, 24363-24391.
[6]
Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Norouzi, M. Cu(II)-Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles: A heterogeneous catalyst for various oxidation reactions. Appl. Organomet. Chem., 2014, 29, 170-175.
[8]
(a) Vijayakumar, B.; Nagendrappa, G.; Jai Prakash, B.S. Acid activated Indian bentonite, an efficient catalyst for esterification of carboxylic acids. Catal. Lett., 2009, 128, 183-189.
(b) Otera, J. Transesterification. Chem. Rev., 1993, 93, 1449-1470.
[9]
Ishihara, K. Dehydrative condensation catalyses. Tetrahedron, 2009, 65, 1085-1109.
[10]
Joseph, T.; Sahoo, S.; Halligudi, S.B. Brönsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification. J. Mol. Catal. Chem., 2005, 234, 107-110.
[11]
Yadav, G.D.; Mehta, P.H. Heterogeneous catalysis in esterification reactions: Preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Ind. Eng. Chem. Res., 1994, 33, 2198-2208.
[12]
Yadav, G.D.; Mujeebur Rahuman, M.S.M. Cation-exchange resincatalysed acylations and esterifications in fine chemical and perfumery industries. Org. Process Res. Dev., 2002, 6, 706-713.
[13]
(a) Mello, V.M.; Pousa, G.P.A.G.; Pereira, M.S.C.; Dias, I.M.; Suarez, P.A.Z. Metal oxides as heterogeneous catalysts for esterification of fatty acids obtained from soybean oil. Fuel Process. Technol., 2011, 92, 53-57.
(b) Dijs, I.J.; Van Ochten, H.L.F.; Van Walree, C.A.; Geus, J.W.; Jenneskens, L.W. Alkyl sulphonic acid surface-functionalised silica as heterogeneous acid catalyst in the solvent-free liquid-phase addition of acetic acid to camphene. J. Mol. Catal. Chem., 2002, 188, 209-224.
(c) Sheldon, R.A.; Downing, R.S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A Gen., 1999, 189, 163-183.
[14]
Zhang, W.; Leng, Y.; Zhu, D.; Wu, Y.; Wang, J. Phosphotungstic acid salt of triphenyl (3-sulfopropyl) phosphonium: An efficient and reusable solid catalyst for esterification. Catal. Commun., 2009, 11, 151-154.
[17]
Gao, L.; Liu, T.; Tao, X.; Huang, Y. 2, 2, 6, 6-Tetramethylpiperidinium triflate (TMPT): A highly selective and self-separated catalyst for esterification. Tetrahedron Lett., 2016, 57, 4905-4909.
[18]
Yadav, G.D.; Thathaga, M. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym., 2002, 52, 99-110.
[19]
Riisager, A.; Eriksen, K.M.; Wasserscheid, P.; Fehrmann, R. Propene and 1-octene hydroformylation with Silica-supported, ionic Liquid-Phase (SILP) Rh-phosphine catalysts in continuous fixedbed mode. Catal. Lett., 2003, 90, 149-153.
[21]
Lai, D.; Deng, L.; Guo, Q.X.; Fu, Y. Hydrolysis of biomass by magnetic solid acid. Energy Environ. Sci., 2011, 4, 3552-3557.
[22]
Fang, R.; Luque, R.; Li, Y. Selective aerobic oxidation of biomassderived HMF to 2, 5-diformylfuran using a MOF-derived magnetic hollow Fe-Co nanocatalyst. Green Chem., 2016, 18, 3152-3157.
[23]
Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: A novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol., 2013, 3, 2104-2112.
[24]
Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. C, 2015, 119, 26020-26028.
[25]
Tai, Z.; Isaacs, M.A.; Durndell, L.J.; Parlett, C.M.A.; Lee, A.F.; Wilson, K. Magnetically-separable Fe3O4@ SiO2@ SO4-ZrO2 coreshell nanoparticle catalysts for propanoic acid esterification. Mol. Catal., 2018, 449, 137-141.
[26]
Alavi, S.J.; Sadeghian, H.; Seyedi, S.M.; Eshghi, H.; Salimi, A. Magnetically recoverable AlFe/Te nanocomposite as a new catalyst for the facile esterification reaction under neat conditions. Appl. Organomet. Chem., 2018, 32, 1-8.
[27]
Takahashi, K.; Shibagaki, M.; Matsushita, H. The esterification of carboxylic acid with alcohol over hydrous zirconium oxide. Bull. Chem. Soc. Jpn., 1989, 62, 2353-2361.
[28]
Miao, J.; Wan, H.; Guan, G. The esterification of carboxylic acid with alcohol over hydrous zirconium oxide. Catal. Commun., 2011, 12, 353-356.
[30]
Orlandi, S.; Mandoli, A.; Pini, D.; Salvadori, P. An insoluble polymer‐bound bis‐oxazoline Copper(II) complex: A highly efficient heterogeneous catalyst for the enantioselective Mukaiyama aldol reaction. Angew. Chem., 2001, 113, 2587-2589.
[31]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85, 2149.
[32]
Fridkin, M.; Patchornik, A.; Katchalski, E. Major methods of peptide bond formation: The peptides analysis. J. Am. Chem. Soc., 1965, 88, 3164-3165.
[33]
Fyles, T.M.; Leznoff, C.C. The use of polymer supports in organic synthesis. V. The preparation of monoacetates of symmetrical diols. Can. J. Chem., 1976, 54, 935-942.
[35]
Sherrington, D.C. Polymer supported reagents, catalysts, and sorbents: Evolution and exploitation-A personalized view. J. Polym. Sci., 2001, 39, 2364-2377.
[36]
Sherrington, D.C. Preparation, structure and morphology of polymer supports. Chem. Commun. (Camb.), 1998, 2275-2286.
[37]
Hodge, P. Synthesis of organic compounds using polymersupported reagents, catalysts, and/or scavengers in Benchtop flow systems. Ind. Eng. Chem. Res., 2005, 44, 8542-8553.
[38]
Amos, R.A.; Emblidge, R.W.; Havens, N. Esterification using a polymer-supported phosphine reagent. J. Org. Chem., 1983, 48, 3598-3600.
[39]
Caputo, R.; Corrado, E.; Ferreri, C.; Palumbo, G. Polymersupported phosphine-halogen complexes-2 A new facile way for esterification of carboxylic acids. Synth. Commun., 1986, 16, 1081-1087.
[40]
Fernhdez-Shchez, C.; Marinas, J.M. Polymer protected reagents, 1. Esterification with polymer bound AlPO4. Angew. Makromol. Chem., 1987, 149, 197-200.
[41]
Fréchet, J.M.J.; Meftahi, M.V. Poly (vinyl pyridine): Simple reactive polymers with multiple applications. Br. Polym. J., 1984, 16, 193-198.
[42]
Balakrishnan, T.; Rajendran, V. Polymer‐supported reagents. II. Kinetics of esterification of acrylic acid with n‐butanol using polymer supported titanium tetrachloride as catalyst. J. Polym. Sci., 1997, 35, 727-733.
[43]
Lei, M.; Ma, C.; Wang, Y,-G. Polymer‐supported 4‐aminoformoyldiphenylammonium triflate (PS‐AFDPAT): An efficient, recoverable and recyclable catalyst for esterification of carboxylic acids with equimolar amounts of alcohols. Chin. J. Chem., 2010, 19, 1309-1311.
[44]
Lizarzaburu, M.E.; Shuttleworth, S.J. Synthesis of aryl ethers from aminoalcohols using polymer-supported triphenylphosphine. Tetrahedron Lett., 2002, 43, 2157-2159.
[45]
Purohit, A.K.; Pardasani, D.; Tak, V.; Kumar, A.; Jain, R.; Dubey, D.K. Mild and efficient esterification of alkylphosphonic acids using polymer-bound triphenylphosphine. Tetrahedron Lett., 2012, 53, 3795-3797.
[46]
White, E.H.; Scherrer, H. The triazene method for the deamination of aliphatic amines. Tetrahedron Lett., 1961, 21, 758-762.
[47]
Sherrington, D.C. Preparation, structure and morphology of polymer supports; Chem Comm, 1998, pp. 2275-2286.
[52]
Marchetti, J.M.; Errazu, A.F. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 2008, 87, 3477-3480.
[53]
Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy, 2010, 87, 1083-1095.
[54]
Math, M.C.; Kumar, S.P.; Chetty, S.V. Technologies for biodiesel production from used cooking oil-A review. Energy Sustain. Dev., 2010, 14, 339-345.
[55]
Cantrell, D.G.; Gillie, L.J.; Lee, A.F.; Wilson, K. Structurereactivity correlations in Mg-Al hydrotalcite catalysts for biodiesel synthesis. Appl. Catal. A Gen., 2005, 287, 183-190.
[57]
Janaun, J.; Ellis, N. Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev., 2010, 14, 1312-1320.
[58]
Zabeti, M.; Wan, D.W.M.A.; Aroua, M.K. Activity of solid catalysts for biodiesel production: A review. Fuel Process. Technol., 2009, 90, 770-777.
[59]
Zhu, H.; Wu, Z.; Chen, Y.; Zhang, P.; Duan, S.; Liu, X.; Mao, Z. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin. J. Catal., 2006, 27, 391-396.
[60]
Verziu, M.; Coman, S.M.; Richards, R.; Parvulescu, V.I. Transesterification of vegetable oils over CaO catalysts. Catal. Today, 2011, 167, 64-70.
[61]
Alonso, D.M.; Vila, F.; Mariscal, R.; Ojeda, M.; Granados, M.L.; Santamaría-González, J. Relevance of the physicochemical properties of CaO catalysts for the methanolysis of triglycerides to obtain biodiesel. Catal. Today, 2010, 158, 114-120.
[62]
Wang, L.; Yang, J. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 2007, 86, 328-333.
[64]
López, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. J. Catal., 2007, 247, 43-50.
[65]
Xie, W.; Peng, H.; Chen, L. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J. Mol. Catal. Chem., 2006, 246, 24-32.
[66]
Fraile, J.M.; García, N.; Mayoral, J.A.; Pires, E.; Roldán, L. The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal. A Gen., 2010, 387, 67-74.
[67]
Tantirungrotechai, J.; Chotmongkolsap, P.; Pohmakotr, M. Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides. Micropor. Mesopor. Mater., 2010, 128, 41-47.
[68]
Taufiq-Yap, Y.H.; Lee, H.V.; Hussein, M.Z.; Yunus, R. Calciumbased mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenerg., 2011, 35, 827-834.
[69]
Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Biodiesel production from crude Jatropha curcas oil using calcium based mixed oxide catalysts. Fuel, 2014, 136, 244-252.
[70]
Taufiq-Yap, Y.H.; Teo, S.H.; Rashid, U.; Islam, A.; Hussien, M.Z.; Lee, K.T. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition. Energy Convers. Manage., 2014, 88, 1290-1296.
[71]
Zabeti, M.; Daud, W.M.A.W.; Aroua, M.K. Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process. Technol., 2010, 91, 243-248.
[72]
Xie, W.; Huang, X. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Lett., 2006, 107, 53-59.
[73]
Sunita, G.; Devassy, B.M.; Vinu, A.; Sawant, D.P.; Balasubramanian, V.V.; Halligudi, S.B. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Commun., 2008, 9, 696-702.
[75]
Sheldon, R.A. Green chemistry, catalysis and valorization of waste biomass. J. Mol. Catal. Chem., 2016, 422, 3-12.
[77]
Sanjay, B. Heterogeneous catalyst derived from natural resources for biodiesel production: a review. Res. J. Chem. Sci., 2013, 3, 95-101.
[78]
Abdullah, S.H.Y.S.; Hanapi, N.H.M.; Azid, A.; Umar, R.; Juahir, H.; Khatoon, H.; Endut, A. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 2017, 70, 1040-1051.
[79]
Arumugam, A.; Sankaranarayanan, P. Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renew. Energy, 2020, 153, 1272-1282.
[81]
Sarma, A.K.; Kumar, P.; Aslam, M.; Chouhan, A.P.S. Preparation and characterization of Musa balbisiana colla underground stem nano-material for biodiesel production under elevated conditions. Catal. Lett., 2014, 144, 1344-1353.
[82]
Gohain, M.; Devi, A.; Deka, D. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind. Crops Prod., 2017, 109, 8-18.
[83]
Sharma, M.; Khan, A.A.; Puri, S.K.; Tuli, D.K. Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenergy, 2012, 41, 94-106.
[84]
Chen, G.Y.; Shan, R.; Shi, J.F.; Yan, B.B. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process. Technol., 2015, 133, 8-13.
[85]
Vadery, V.; Narayanan, B.N.; Ramakrishnan, R.M.; Cherikkallinmel, S.K.; Sugunan, S.; Narayanan, D.P.; Sasidharan, S. Room temperature production of Jatropha biodiesel over coconut husk ash. Energy, 2014, 70, 588-594.
[86]
Hu, S.; Wang, Y.; Han, H. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy, 2011, 35, 3627-3635.
[90]
Xie, J.; Zheng, X.; Dong, A.; Xiao, Z.; Zhang, J. Biont shell catalyst for biodiesel production. Green Chem., 2009, 11, 355-364.
[91]
Ofori-Boateng, C.; Lee, K.T. The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chem. Eng. J., 2013, 220, 395-401.
[92]
Oliveira, D.A.; Benelli, P.; Amante, E.R. A literature review on adding value to solid residues: Egg shells. J. Clean. Prod., 2013, 46, 42-47.
[93]
Boey, P.L.; Maniam, G.P.; Hamid, S.A.; Ali, D.M.H. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fue., 2011, 90, 2353-2358.
[94]
Suryaputra, W.; Winata, I.; Indraswati, N.; Ismadji, S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy, 2013, 50, 795-799.
[95]
Boro, J.; Thakur, A.J.; Deka, D. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process. Technol., 2011, 92, 2061-2067.
[96]
Laskar, I.B.; Rajkumari, K.; Gupta, R.; Chatterjee, S.; Paul, B.; Rokhum, L. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv., 2018, 8, 20131-20142.
[97]
Laskar, I.B.; Rajkumari, K.; Gupta, R.; Rokhum, L. Acidfunctionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energy Fuels, 2018, 32, 12567-12576.
[98]
Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X.; Kusakabe, K.; Abudula, A. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manage., 2015, 95, 242-247.
[104]
Luque, R.; Pineda, A.; Colmenares, J.C.; Campelo, J.M.; Romero, A.A.; Serrano-Riz, J.C.; Cabeza, L.F.; Cot-Gores, J. Carbonaceous residues from biomass gasification as catalysts for biodiesel production. J. Nat. Gas Chem., 2012, 21, 246-250.
[106]
Deka, D.C.; Basumatary, S. High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil. Biomass Bioenerg., 2011, 35, 1797-1803.
[107]
Chouhan, A.P.S.; Sarma, A.K. Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass Bioenerg., 2013, 55, 386-389.
[108]
Pathak, G.; Das, D.; Rajkumari, K.; Rokhum, L. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem., 2018, 20, 2365-2373.
[109]
Luzzio, F.A. The Henry reaction: Recent examples. Tetrahedron, 2001, 57, 915-945.
[110]
Rosini, G.; Ballini, R. Functionalized nitroalkanes as useful reagents for alkyl anion synthons. Synthesis, 1988, 11, 833-847.
[112]
Ni, B.; He, J. Highly asymmetric Henry reaction catalyzed by chiral copper (II) complexes. Tetrahedron Lett., 2013, 54, 462-465.
[113]
Ballini, R.; Bosica, G.; Forconi, P. Nitroaldol (Henry) reaction catalyzed by amberlyst A-21 as a far superior heterogeneous catalyst. Tetrahedron, 1996, 52, 1677-1684.
[114]
Ballini, R.; Bosica, G.; Livi, D.; Palmieri, A.; Maggi, R.; Sartori, G. Use of heterogeneous catalyst KG-60-NEt2 in Michael and Henry reactions involving nitroalkanes. Tetrahedron Lett., 2003, 44, 2271-2273.
[115]
Das, D.; Pathak, G.; Rokhum, L. Polymer supported DMAP: an easily recyclable organocatalyst for highly atom-economical Henry reaction under solvent-free conditions. RSC Adv., 2016, 6, 104154-104163.
[116]
Karmakar, A.; Hazra, S.; Guedes Da Silva, M.F.C.; Paul, A.; Pombeiro, A.J.L. Nanoporous lanthanide metal-organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.
[118]
Lee, J.M.; Kim, J.; Shin, Y.; Yeom, C.E.; Lee, J.E.; Hyeon, T.; Moon Kim, B. Heterogeneous asymmetric Henry reaction using a chiral bis(oxazoline)-copper complex immobilized on magnetically separable mesocellular mesoporous silica support. Tetrahedron Asymmetry, 2010, 21, 285-291.
[119]
Rajkumari, K.; Das, D.; Pathak, G.; Rokhum, L. Waste-to-useful: A biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New J. Chem., 2019, 43, 2134-2140.
[120]
Pathak, G.; Rajkumari, R.; Rokhum, L. Wealth from waste: M. acuminata peel waste-derived magnetic nanoparticles as a solid catalyst for the Henry reaction. Nanoscale Adv., 2019, 1, 1013-1020.
[121]
Rokhum, L.; Bez, G. Ethyl acrylate conjugated polystyryldiphenylphosphine-An extremely efficient catalyst for Henry reaction under solvent-free conditions (SolFC). Can. J. Chem., 2013, 91(4), 300-306.
[122]
Rokhum, L.; Pathak, G. Synthesis, characterization and catalytic activity of magnetic KI@Fe3O4 nanoparticles for Henry reaction under solvent free conditions Cat. Lett., 2019, 149(10), 2887-98.
[123]
Maggi, R.; Lanari, D.; Oro, C.; Sartori, G.; Vaccaro, L. Heterogeneous bisoxazoline/copper complex: A green catalyst for the enantioselective reaction of nitromethane with substituted benzaldehydes. Eur. J. Org. Chem., 2011, 28, 5551-5554.