Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Anti-inflammatory Property of AMP-activated Protein Kinase

Author(s): Humaira B. Noor, Nusrat A. Mou, Liyad Salem, Md F.A. Shimul, Soumick Biswas, Rowshon Akther, Salma Khan, Sabbir Raihan, Md M. Mohib and Md A.T. Sagor*

Volume 19, Issue 1, 2020

Page: [2 - 41] Pages: 40

DOI: 10.2174/1871523018666190830100022

Abstract

Background: One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development.

Methods: We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010.

Results: Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases.

Conclusion: The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.

Keywords: IL-1β, immunity, inflammation, NF-κB and AMPK, TNF-α, autoimmune diseases, inflammatory disorders.

Graphical Abstract

[1]
Bohanec, M.; Boshkoska, B.M.; Prins, T.W.; Kok, E.J. SIGMO: a decision support system for identifica-tion of genetically modified food or feed products. Food Control, 2017, 71, 168-177.
[http://dx.doi.org/10.1016/j.foodcont.2016.06.032]
[2]
Tosun, J.; Schaub, S. Mobilization in the European Public Sphere: The struggle over genetically modified organisms. Rev. Policy Res., 2017, 34(3), 310-330.
[http://dx.doi.org/10.1111/ropr.12235]
[3]
Baars, J.; Dannefer, D.; Phillipson, C.; Walker, A. Aging, globalization and inequality: The new critical gerontology, 1st ed; CRC Press, 2016.
[4]
Mohib, M.M.; Hasan, I.; Chowdhury, W.K.; Chow-dhury, N.U.; Mohiuddin, S.; Sagor, M.A.T.; Reza, H.M.; Alam, M.A. Role of angiotensin II in hepatic inflammation through MAPK pathway: A review. Hepatitis, 2016, 2, 2.
[5]
Hotamisligil, G.S. Inflammation and metabolic disor-ders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[6]
Alam, M.A.; Chowdhury, M.R.H.; Jain, P.; Sagor, M.A.T.; Reza, H.M. DPP-4 inhibitor sitagliptin pre-vents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol. Metab. Syndr., 2015, 7(1), 107.
[http://dx.doi.org/10.1186/s13098-015-0095-3] [PMID: 26609328]
[7]
Alam, P.; Raka, M.A.; Khan, S.; Sarker, J.; Ahmed, N.; Nath, P.D.; Hasan, N.; Mohib, M.M.; Tisha, A.; Taher, S.M.A. A clinical review of the effectiveness of tomato (Solanum lycopersicum) against cardiovascu-lar dysfunction and related metabolic syndrome. J. Herb. Med., 2018, 16100235
[http://dx.doi.org/10.1016/j.hermed.2018.09.006]
[8]
Lowe, G.D. The relationship between infection, in-flammation, and cardiovascular disease: an overview. Ann. Periodontol., 2001, 6(1), 1-8.
[http://dx.doi.org/10.1902/annals.2001.6.1.1] [PMID: 11887452]
[9]
Salminen, A.; Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an in-tegrated signaling network. Ageing Res. Rev., 2012, 11(2), 230-241.
[http://dx.doi.org/10.1016/j.arr.2011.12.005] [PMID: 22186033]
[10]
Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1α in inflammation and chronic disease. Nature, 2008, 454(7203), 463-469.
[http://dx.doi.org/10.1038/nature07206] [PMID: 18650917]
[11]
Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12967-018-1381-2] [PMID: 29370858]
[12]
Yi, C-O.; Jeon, B.T.; Shin, H.J.; Jeong, E.A.; Chang, K.C.; Lee, J.E.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Resveratrol acti-vates AMPK and suppresses LPS-induced NF-κB-dependent COX-2 activation in RAW 264.7 macro-phage cells. Anat. Cell Biol., 2011, 44(3), 194-203.
[http://dx.doi.org/10.5115/acb.2011.44.3.194] [PMID: 22025971]
[13]
Hardie, D.G.; Schaffer, B.E.; Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and out-puts. Trends Cell Biol., 2016, 26(3), 190-201.
[http://dx.doi.org/10.1016/j.tcb.2015.10.013] [PMID: 26616193]
[14]
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy ho-meostasis. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 251-262.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[15]
Lovelace, E.S.; Polyak, S.J. Natural products as tools for defining how cellular metabolism influences cel-lular immune and inflammatory function during chronic infection. Viruses, 2015, 7(12), 6218-6232.
[http://dx.doi.org/10.3390/v7122933] [PMID: 26633463]
[16]
Gongol, B.; Marin, T.; Peng, I-C.; Woo, B.; Martin, M.; King, S.; Sun, W.; Johnson, D.A.; Chien, S.; Shyy, J.Y-J. AMPKα2 exerts its anti-inflammatory effects through PARP-1 and Bcl-6. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 3161-3166.
[http://dx.doi.org/10.1073/pnas.1222051110] [PMID: 23382195]
[17]
Li, J.; Zhong, L.; Wang, F.; Zhu, H. Dissecting the role of AMP-activated protein kinase in human dis-eases. Acta Pharm. Sin. B, 2017, 7(3), 249-259.
[http://dx.doi.org/10.1016/j.apsb.2016.12.003] [PMID: 28540163]
[18]
Park, D.W.; Jiang, S.; Tadie, J-M.; Stigler, W.S.; Gao, Y.; Deshane, J.; Abraham, E.; Zmijewski, J.W. Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol. Med., 2013, 19(1), 387-398.
[http://dx.doi.org/10.2119/molmed.2013.00065] [PMID: 24091934]
[19]
Salminen, A.; Hyttinen, J.M.T.; Kaarniranta, K. AMP-activated protein kinase inhibits NF-κB signal-ing and inflammation: impact on healthspan and lifespan. J. Mol. Med. (Berl.), 2011, 89(7), 667-676.
[http://dx.doi.org/10.1007/s00109-011-0748-0] [PMID: 21431325 ]
[20]
Taher, S.M.A.; Mohib, M.M.; Azam, M.S.; Rahman, A.; Tanmoy, F.T.; Chowdhury, W.K.; Chowdhury, N.U.; Reza, H.M.; Alam, M.A. Angiotensin-II, a po-tent peptide, participates in the development of hepat-ic dysfunctions. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2016, 16(3), 161-177.
[21]
Mohib, M.M.; Afnan, K.; Paran, T.Z.; Khan, S.; Sarker, J.; Hasan, N.; Hasan, I.; Sagor, M.A.T. Bene-ficial role of citrus fruit polyphenols against hepatic dysfunctions: a review. J. Diet. Suppl., 2017, 15(2), 223-250.
[PMID: 28641051]
[22]
Chowdhury, N.U.; Farooq, T.; Abdullah, S.; Mahadi, A.S.; Hasan, M.M.; Paran, T.Z.; Hasan, N.; Mohib, M.M.; Sagor, M.A.T.; Alam, M.A. Matrix metalloproteinases (MMP), a major responsible downstream signaling molecule for cellular damage-a review. Mol. Enz. Drug Tar., 2016, 2, 3.
[http://dx.doi.org/10.21767/2572-5475.10019]
[23]
Sagor, M.A.T.; Tabassum, N.; Potol, M.A.; Alam, M.A. Xanthine oxidase inhibitor, allopurinol, pre-vented oxidative stress, fibrosis, and myocardial dam-age in isoproterenol induced aged rats. Oxid. Med. Cell. Longev., 2015, 2015 478039
[http://dx.doi.org/10.1155/2015/478039]
[24]
Sagor, M.A.T.; Mohib, M.; Tabassum, N.; Ahmed, I.; Reza, H. Fresh seed supplementation of Syzygium cumini attenuated oxidative stress, inflammation, fibrosis, iron overload, hepatic dysfunction and renal injury in acetaminophen induced rats. J. Drug Metab. Toxicol., 2016, 7(2), 1-10.
[25]
Alam, M.A.; Sagor, A.T.; Tabassum, N.; Ulla, A.; Shill, M.C.; Rahman, G.M.S.; Hossain, H.; Reza, H.M. Caffeic acid rich Citrus macroptera peel powder supplementation prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. Clinical Phytoscience, 2018, 4(1), 14.
[http://dx.doi.org/10.1186/s40816-018-0074-y]
[26]
Mohib, M.M.; Rabby, S.F.; Paran, T.Z.; Hasan, M.M.; Ahmed, I.; Hasan, N.; Sagor, M.A.T.; Mohiuddin, S. Protective role of green tea on diabetic nephropathy- A review. Cogent Biol., 2016, 2(1) 1248166
[27]
Al-Amin, M.M.; Sultana, R.; Sultana, S.; Rahman, M.M.; Reza, H.M. Astaxanthin ameliorates prenatal LPS-exposed behavioral deficits and oxidative stress in adult offspring. BMC Neurosci., 2016, 17(1), 11.
[http://dx.doi.org/10.1186/s12868-016-0245-z] [PMID: 26856812]
[28]
Bush, K.A.; Farmer, K.M.; Walker, J.S.; Kirkham, B.W. Reduction of joint inflammation and bone ero-sion in rat adjuvant arthritis by treatment with inter-leukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum., 2002, 46(3), 802-805.
[http://dx.doi.org/10.1002/art.10173] [PMID: 11920418]
[29]
Anderson, L.A.; Johnston, B.T.; Watson, R.G.; Mur-phy, S.J.; Ferguson, H.R.; Comber, H.; McGuigan, J.; Reynolds, J.V.; Murray, L.J. Nonsteroidal anti-inflammatory drugs and the esophageal inflammation-metaplasia-adenocarcinoma sequence. Cancer Res., 2006, 66(9), 4975-4982.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4253] [PMID: 16651456]
[30]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[31]
Braza, M.S.; van Leent, M.M.; Lameijer, M.; Sanchez-Gaytan, B.L.; Arts, R.J.; Pérez-Medina, C.; Conde, P.; Garcia, M.R.; Gonzalez-Perez, M.; Brahmachary, M. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity, 2018, 49(5), 819-828.
[http://dx.doi.org/10.1016/j.immuni.2018.09.008]
[32]
Lacotte, S.; Brun, S.; Muller, S.; Dumortier, H. CXCR3, inflammation, and autoimmune diseases. Ann. N. Y. Acad. Sci., 2009, 1173(1), 310-317.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04813.x] [PMID: 19758167]
[33]
Hamminga, E.A.; van der Lely, A-J.; Neumann, H.A.; Thio, H.B. Chronic inflammation in psoriasis and obesity: implications for therapy. Med. Hypotheses, 2006, 67(4), 768-773.
[http://dx.doi.org/10.1016/j.mehy.2005.11.050] [PMID: 16781085]
[34]
Wong, C.K.; Ho, C.Y.; Li, E.K.; Lam, C.W. Eleva-tion of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus, 2000, 9(8), 589-593.
[http://dx.doi.org/10.1191/096120300678828703] [PMID: 11035433]
[35]
Saevik, Å.B.; Åkerman, A.K.; Grønning, K.; Nermoen, I.; Valland, S.F.; Finnes, T.E.; Isaksson, M.; Dahlqvist, P.; Bergthorsdottir, R.; Ekwall, O.; Skov, J.; Nedrebø, B.G.; Hulting, A.L.; Wahlberg, J.; Svartberg, J.; Höybye, C.; Bleskestad, I.H.; Jørgen-sen, A.P.; Kämpe, O.; Øksnes, M.; Bensing, S.; Husebye, E.S. Clues for early detection of autoim-mune Addison’s disease - myths and realities. J. Intern. Med., 2018, 283(2), 190-199.
[http://dx.doi.org/10.1111/joim.12699] [PMID: 29098731]
[36]
Uslu-Beşli, L.; Kabasakal, L.; Sağer, S.; Cicik, E.; Asa, S.; Sönmezoğlu, K. Orbital flourine-18-fluorodeoxyglucose positron emission tomography in patients with Graves’ disease for evaluation of active inflammation. Nucl. Med. Commun., 2017, 38(11), 964-970.
[http://dx.doi.org/10.1097/MNM.0000000000000737] [PMID: 28863123]
[37]
Aktas, G.; Sit, M.; Dikbas, O.; Erkol, H.; Altinordu, R.; Erkus, E.; Savli, H. Elevated neutrophil-tolymphocyte ratio in the diagnosis of Hashimoto’s thyroiditis. Rev Assoc Med Bras (1992), 2017, 63(12), 1065-1068.
[http://dx.doi.org/10.1590/1806-9282.63.12.1065] [PMID: 29489971]
[38]
Christen, U. Animal models of autoimmune hepatitis. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1865(5), 970-981.
[39]
Needell, J.C.; Brown, M.N.; Zipris, D. Involvement of adipose tissue inflammation and dysfunction in vi-rus-induced type 1 diabetes. J. Endocrinol., 2018, 238(1), 61-75.
[http://dx.doi.org/10.1530/JOE-18-0131] [PMID: 29743341]
[40]
George, M.D.; Østergaard, M.; Conaghan, P.G.; Em-ery, P.; Baker, D.G.; Baker, J.F. Obesity and rates of clinical remission and low MRI inflammation in rheumatoid arthritis. Ann. Rheum. Dis., 2017, 76(10), 1743-1746.
[http://dx.doi.org/10.1136/annrheumdis-2017-211569]
[41]
Shah, A.; Walker, M.; Burger, D.; Martin, N.; Ko-loski, N.; Jones, M.; Talley, N. Link between celiac disease and inflammatory bowel disease. J. Clin. Gastroenterol., 2018, 53(7), 514-522.
[http://dx.doi.org/10.1097/MCG.0000000000001033] [PMID: 29762265]
[42]
Nocturne, G.; Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. Rev. Rheumatol., 2018, 14(3), 133-145.
[http://dx.doi.org/10.1038/nrrheum.2018.1] [PMID: 29416129]
[43]
Clark, K.E.N.; Isenberg, D.A. A review of inflamma-tory idiopathic myopathy focusing on polymyositis. Eur. J. Neurol., 2018, 25(1), 13-23.
[http://dx.doi.org/10.1111/ene.13357] [PMID: 28816394]
[44]
Juergens, L.J.; Racké, K.; Tuleta, I.; Stoeber, M.; Juergens, U.R. Anti-inflammatory effects of 1, 8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? Synergy, 2017, 5, 1-8.
[http://dx.doi.org/10.1016/j.synres.2017.08.001]
[45]
Shalapour, S.; Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest., 2015, 125(9), 3347-3355.
[http://dx.doi.org/10.1172/JCI80007] [PMID: 26325032]
[46]
Taniguchi, K.; Karin, M. NF-κB, inflammation, im-munity and cancer: coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[47]
Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med., 2011, 13 e23
[http://dx.doi.org/10.1017/S1462399411001943] [PMID: 21740602]
[48]
Guo, S.; Dipietro, L.A. Factors affecting wound heal-ing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[49]
Chen, X.; Gao, Y.; Liu, C.; Ni, H.; Mulvihill, M. Sub-stituted nicotinamide inhibitors of BTK and their preparation and use in the treatment of cancer, in-flammation and autoimmune disease. Google Patents, WO2015048662A3 2018.
[50]
Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and me-tabolism. Nat. Cell Biol., 2011, 13(9), 1016-1023.
[http://dx.doi.org/10.1038/ncb2329] [PMID: 21892142]
[51]
He, Y.; Li, Y.; Zhao, T.; Wang, Y.; Sun, C. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway. PLoS One, 2013, 8(7) e70135
[http://dx.doi.org/10.1371/journal.pone.0070135] [PMID: 23922935]
[52]
Woods, A.; Azzout-Marniche, D.; Foretz, M.; Stein, S.C.; Lemarchand, P.; Ferré, P.; Foufelle, F.; Carling, D. Characterization of the role of AMP-activated pro-tein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol., 2000, 20(18), 6704-6711.
[http://dx.doi.org/10.1128/MCB.20.18.6704-6711.2000] [PMID: 10958668]
[53]
Jeon, S. -.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med., 2016, 48(7) e245
[http://dx.doi.org/10.1038/emm.2016.81] [PMID: 27416781 ]
[54]
Motoshima, H.; Goldstein, B.J.; Igata, M.; Araki, E. AMPK and cell proliferation- AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol., 2006, 574(Pt 1), 63-71.
[http://dx.doi.org/10.1113/jphysiol.2006.108324] [PMID: 16613876]
[55]
Horman, S.; Vertommen, D.; Heath, R.; Neumann, D.; Mouton, V.; Woods, A.; Schlattner, U.; Walli-mann, T.; Carling, D.; Hue, L.; Rider, M.H. Insulin antagonizes ischemia-induced Thr172 phosphoryla-tion of AMP-activated protein kinase α-subunits in heart via hierarchical phosphorylation of Ser485/491. J. Biol. Chem., 2006, 281(9), 5335-5340.
[http://dx.doi.org/10.1074/jbc.M506850200] [PMID: 16340011]
[56]
Liu, X.M.; Peyton, K.J.; Shebib, A.R.; Wang, H.; Korthuis, R.J.; Durante, W. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(1), H84-H93.
[http://dx.doi.org/10.1152/ajpheart.00749.2010] [PMID: 21037234]
[57]
Park, C.E.; Yun, H.; Lee, E-B.; Min, B-I.; Bae, H.; Choe, W.; Kang, I.; Kim, S-S.; Ha, J. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induc-tion in prostate cancer cells. J. Med. Food, 2010, 13(4), 815-820.
[http://dx.doi.org/10.1089/jmf.2009.1359] [PMID: 20673057]
[58]
Mori, A.; Ishikawa, E.; Amano, T.; Sakamoto, K.; Nakahara, T. Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. Eur. J. Pharmacol., 2017, 798, 66-71.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.003] [PMID: 28087254]
[59]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabo-lism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[60]
Kim, S.H.; Hur, H.J.; Yang, H.J.; Kim, H.J.; Kim, M.J.; Park, J.H.; Sung, M.J.; Kim, M.S.; Kwon, D.Y.; Hwang, J-T. Citrus junos tanaka peel extract exerts antidia-betic effects via AMPK and PPAR-both in vitro and in vivo in mice fed a high-fat diet. Evid. Based Complement. Alternat. Med., 2013, 2013 921012
[61]
Yang, H.J.; Jang, D-J.; Hwang, J-T. Anti-diabetic effects of Korean red pepper via AMPK and PPAR-γ activation in C2C12 myotubes. J. Funct. Foods, 2012, 4(2), 552-558.
[http://dx.doi.org/10.1016/j.jff.2012.02.016]
[62]
Lu, J.; Chen, X.; Zhang, Y.; Xu, J.; Zhang, L.; Li, Z.; Liu, W.; Ouyang, J.; Han, S.; He, X. Astragalus poly-saccharide induces anti-inflammatory effects depend-ent on AMPK activity in palmitate-treated RAW264.7 cells. Int. J. Mol. Med., 2013, 31(6), 1463-1470.
[http://dx.doi.org/10.3892/ijmm.2013.1335] [PMID: 23563695]
[63]
Bai, T.; Yang, Y.; Wu, Y-L.; Jiang, S.; Lee, J.J.; Lian, L-H.; Nan, J-X. Thymoquinone alleviates thioacetam-ide-induced hepatic fibrosis and inflammation by ac-tivating LKB1-AMPK signaling pathway in mice. Int. Immunopharmacol., 2014, 19(2), 351-357.
[http://dx.doi.org/10.1016/j.intimp.2014.02.006] [PMID: 24560906]
[64]
Cheng, H-L.; Kuo, C-Y.; Liao, Y-W.; Lin, C-C. EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-α-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. Eur. J. Pharmacol., 2012, 689(1-3), 241-248.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.033] [PMID: 22683870]
[65]
Zhang, M.; Lv, X.; Li, J.; Meng, Z.; Wang, Q.; Chang, W.; Li, W.; Chen, L.; Liu, Y. Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis. Mol. Cell. Endocrinol., 2012, 363(1-2), 122-130.
[http://dx.doi.org/10.1016/j.mce.2012.08.006] [PMID: 22922125]
[66]
Han, J.Y.; Park, S.H.; Yang, J.H.; Kim, M.G.; Cho, S.S.; Yoon, G.; Cheon, S.H.; Ki, S.H. Licochalcone suppresses LXRα-induced hepatic lipogenic gene ex-pression through AMPK/Sirt1 pathway activation. Toxicol. Res., 2014, 30(1), 19-25.
[http://dx.doi.org/10.5487/TR.2014.30.1.019] [PMID: 24795795]
[67]
Nam, J.S.; Chung, H.J.; Jang, M.K.; Jung, I.A.; Park, S.H.; Cho, S.I.; Jung, M.H. Sasa borealis extract ex-erts an antidiabetic effect via activation of the AMP-activated protein kinase. Nutr. Res. Pract., 2013, 7(1), 15-21.
[http://dx.doi.org/10.4162/nrp.2013.7.1.15] [PMID: 23423690]
[68]
Lee, J-W.; Choe, S.S.; Jang, H.; Kim, J.; Jeong, H.W.; Jo, H.; Jeong, K-H.; Tadi, S.; Park, M.G.; Kwak, T.H.; Man Kim, J.; Hyun, D.H.; Kim, J.B. AMPK activation with glabridin ameliorates adiposi-ty and lipid dysregulation in obesity. J. Lipid Res., 2012, 53(7), 1277-1286.
[http://dx.doi.org/10.1194/jlr.M022897] [PMID: 22493094]
[69]
Zhu, K.N.; Jiang, C.H.; Tian, Y.S.; Xiao, N.; Wu, Z.F.; Ma, Y.L.; Lin, Z.; Fang, S.Z.; Shang, X.L.; Liu, K.; Zhang, J.; Liu, B.L.; Yin, Z.Q. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglan-daceae) promote glucose uptake in 3T3-L1 adipo-cytes: The relationship to AMPK activation. Phytomedicine, 2015, 22(9), 837-846.
[http://dx.doi.org/10.1016/j.phymed.2015.05.058] [PMID: 26220631]
[70]
Kang, O-H.; Shon, M-Y.; Kong, R.; Seo, Y-S.; Zhou, T.; Kim, D-Y.; Kim, Y-S.; Kwon, D-Y. Anti-diabetic effect of black ginseng extract by augmenta-tion of AMPK protein activity and upregulation of GLUT2 and GLUT4 expression in db/db mice. BMC Complement. Altern. Med., 2017, 17(1), 341.
[http://dx.doi.org/10.1186/s12906-017-1839-4] [PMID: 28662663]
[71]
Shi, L.; Zhang, T.; Liang, X.; Hu, Q.; Huang, J.; Zhou, Y.; Chen, M.; Zhang, Q.; Zhu, J.; Mi, M. Di-hydromyricetin improves skeletal muscle insulin re-sistance by inducing autophagy via the AMPK signal-ing pathway. Mol. Cell. Endocrinol., 2015, 409, 92-102.
[http://dx.doi.org/10.1016/j.mce.2015.03.009] [PMID: 25797177]
[72]
Kim, H.; Choung, S-Y. Anti-obesity effects of Bous-singaulti gracilis Miers var. pseudobaselloides Bailey via activation of AMP-activated protein kinase in 3T3-L1 cells. J. Med. Food, 2012, 15(9), 811-817.
[http://dx.doi.org/10.1089/jmf.2011.2126] [PMID: 22871035]
[73]
Wang, Z.Q.; Zhang, X.H.; Yu, Y.; Tipton, R.C.; Raskin, I.; Ribnicky, D.; Johnson, W.; Cefalu, W.T. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by en-hancing hepatic insulin and AMPK signaling inde-pendently of FGF21 pathway. Metabolism, 2013, 62(9), 1239-1249.
[http://dx.doi.org/10.1016/j.metabol.2013.03.004] [PMID: 23702383]
[74]
Zhou, X.; Wang, F.; Yang, H.; Chen, J.; Ren, Y.; Yu-an, Z.; Wang, X.; Wang, Y. Selenium enriched ex-opolysaccharides produced by Enterobacter cloacae Z0206 alleviate adipose inflammation in diabetic KKAy mice through the AMPK/SirT1 pathway. Mol. Med. Rep., 2014, 9(2), 683-688.
[http://dx.doi.org/10.3892/mmr.2013.1859] [PMID: 24337047]
[75]
Chao, C-L.; Huang, H-C.; Lin, H-C.; Chang, T-C.; Chang, W-L. Sesquiterpenes from Baizhu stimulate glucose uptake by activating AMPK and PI3K. Am. J. Chin. Med., 2016, 44(5), 963-979.
[http://dx.doi.org/10.1142/S0192415X16500531] [PMID: 27430917]
[76]
Zha, Q-B.; Zhang, X-Y.; Lin, Q-R.; Xu, L-H.; Zhao, G-X.; Pan, H.; Zhou, D.; Ouyang, D-Y.; Liu, Z-H.; He, X-H. Cucurbitacin E induces autophagy via downregulating mTORC1 signaling and upregu-lating AMPK activity. PLoS One, 2015, 10(5) e0124355
[http://dx.doi.org/10.1371/journal.pone.0124355] [PMID: 25970614]
[77]
Leem, K-H.; Kim, M-G.; Hahm, Y-T.; Kim, H.K. Hypoglycemic effect of Opuntia ficus-indica var. saboten is due to enhanced peripheral glucose uptake through activation of AMPK/p38 MAPK pathway. Nutrients, 2016, 8(12), 800.
[http://dx.doi.org/10.3390/nu8120800] [PMID: 27941667]
[78]
Choi, B.K.; Kim, T.W.; Lee, D.R.; Jung, W.H.; Lim, J.H.; Jung, J.Y.; Yang, S.H.; Suh, J.W. A polymeth-oxy flavonoids-rich Citrus aurantium extract amelio-rates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model. Phytother. Res., 2015, 29(10), 1577-1584.
[http://dx.doi.org/10.1002/ptr.5415] [PMID: 26178909]
[79]
Guo, L.; Zheng, X.; Liu, J.; Yin, Z. Geniposide sup-presses hepatic glucose production via AMPK in HepG2 cells. Biol. Pharm. Bull., 2016, 39(4), 484-491.
[http://dx.doi.org/10.1248/bpb.b15-00591] [PMID: 26830672]
[80]
Muanprasat, C.; Wongkrasant, P.; Satitsri, S.; Moon-wiriyakit, A.; Pongkorpsakol, P.; Mattaveewong, T.; Pichyangkura, R.; Chatsudthipong, V. Activation of AMPK by chitosan oligosaccharide in intestinal epi-thelial cells: Mechanism of action and potential appli-cations in intestinal disorders. Biochem. Pharmacol., 2015, 96(3), 225-236.
[http://dx.doi.org/10.1016/j.bcp.2015.05.016] [PMID: 26047848]
[81]
Song, C-Y.; Shi, J.; Zeng, X.; Zhang, Y.; Xie, W-F.; Chen, Y-X. Sophocarpine alleviates hepatocyte stea-tosis through activating AMPK signaling pathway. Toxicol. In Vitro, 2013, 27(3), 1065-1071.
[http://dx.doi.org/10.1016/j.tiv.2013.01.020] [PMID: 23395669]
[82]
Sung, B.; Chung, J.W.; Bae, H.R.; Choi, J.S.; Kim, C.M.; Kim, N.D. Humulus japonicus extract exhibits antioxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway. Exp. Ther. Med., 2015, 9(5), 1819-1826.
[http://dx.doi.org/10.3892/etm.2015.2302] [PMID: 26136899]
[83]
Tu, Z.; Moss-Pierce, T.; Ford, P.; Jiang, T.A. Rose-mary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J. Agric. Food Chem., 2013, 61(11), 2803-2810.
[http://dx.doi.org/10.1021/jf400298c] [PMID: 23432097]
[84]
Iseli, T.J.; Turner, N.; Zeng, X-Y.; Cooney, G.J.; Kraegen, E.W.; Yao, S.; Ye, Y.; James, D.E.; Ye, J-M. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One, 2013, 8(4) e62309
[http://dx.doi.org/10.1371/journal.pone.0062309] [PMID: 23638033]
[85]
Chen, J.; Deng, X.; Liu, N.; Li, M.; Liu, B.; Fu, Q.; Qu, R.; Ma, S. Quercetin attenuates tau hyperphos-phorylation and improves cognitive disorder via sup-pression of ER stress in a manner dependent on AMPK pathway. J. Funct. Foods, 2016, 22, 463-476.
[http://dx.doi.org/10.1016/j.jff.2016.01.036]
[86]
Wang, D.; Ma, W.; Wang, F.; Dong, J.; Wang, D.; Sun, B.; Wang, B. Stimulation of Wnt/β-Catenin sig-naling to improve bone development by naringin via interacting with AMPK and Akt. Cell. Physiol. Biochem., 2015, 36(4), 1563-1576.
[http://dx.doi.org/10.1159/000430319] [PMID: 26159568]
[87]
Zhang, C.; Hawley, S.; Zong, Y.; Hawley, S.A.; Zong, Y.; Li, M.; Wang, Z.; Gray, A.; Ma, T.; Cui, J.; Feng, J.W.; Zhu, M.; Wu, Y-Q.; Li, T.Y.; Ye, Z.; Lin, S-Y.; Yin, H.; Piao, H-L.; Hardie, D.G.; Lin, S-C. Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature, 2017, 548(7665), 112-116.
[http://dx.doi.org/10.1038/nature23275]
[88]
Hawley, S.A.; Davison, M.; Woods, A.; Davies, S.P.; Beri, R.K.; Carling, D.; Hardie, D.G. Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein ki-nase. J. Biol. Chem., 1996, 271(44), 27879-27887.
[http://dx.doi.org/10.1074/jbc.271.44.27879] [PMID: 8910387 ]
[89]
Day, E.A.; Ford, R.J.; Steinberg, G.R. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol. Metab., 2017, 28(8), 545-560.
[http://dx.doi.org/10.1016/j.tem.2017.05.004] [PMID: 28647324]
[90]
Hwang, J-T.; Kwon, D.Y.; Yoon, S.H. AMP-activated protein kinase: a potential target for the dis-eases prevention by natural occurring polyphenols. N. Biotechnol., 2009, 26(1-2), 17-22.
[http://dx.doi.org/10.1016/j.nbt.2009.03.005] [PMID: 19818314]
[91]
Crute, B.E.; Seefeld, K.; Gamble, J.; Kemp, B.E.; Witters, L.A. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem., 1998, 273(52), 35347-35354.
[http://dx.doi.org/10.1074/jbc.273.52.35347] [PMID: 9857077]
[92]
Bendayan, M.; Londono, I.; Kemp, B.E.; Hardie, G.D.; Ruderman, N.; Prentki, M. Association of AMP-activated protein kinase subunits with glycogen particles as revealed in situ by immunoelectron mi-croscopy. J. Histochem. Cytochem., 2009, 57(10), 963-971.
[http://dx.doi.org/10.1369/jhc.2009.954016] [PMID: 19581628]
[93]
Hudson, E.R.; Pan, D.A.; James, J.; Lucocq, J.M.; Hawley, S.A.; Green, K.A.; Baba, O.; Terashima, T.; Hardie, D.G. A novel domain in AMP-activated pro-tein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol., 2003, 13(10), 861-866.
[http://dx.doi.org/10.1016/S0960-9822(03)00249-5] [PMID: 12747836]
[94]
Peixoto, C.A.; Oliveira, W.H.; Araújo, S.M.D.R.; Nunes, A.K.S. AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp. Neurol., 2017, 298(Pt A), 31-41.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.013] [PMID: 28844606]
[95]
Polekhina, G.; Gupta, A.; Michell, B.J.; van Denderen, B.; Murthy, S.; Feil, S.C.; Jennings, I.G.; Campbell, D.J.; Witters, L.A.; Parker, M.W.; Kemp, B.E.; Stapleton, D. AMPK β subunit targets metabol-ic stress sensing to glycogen. Curr. Biol., 2003, 13(10), 867-871.
[http://dx.doi.org/10.1016/S0960-9822(03)00292-6] [PMID: 12747837]
[96]
McBride, A.; Ghilagaber, S.; Nikolaev, A.; Hardie, D.G. The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab., 2009, 9(1), 23-34.
[http://dx.doi.org/10.1016/j.cmet.2008.11.008] [PMID: 19117544]
[97]
Oakhill, J.S.; Chen, Z-P.; Scott, J.W.; Steel, R.; Cas-telli, L.A.; Ling, N.; Macaulay, S.L.; Kemp, B.E. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl. Acad. Sci. USA, 2010, 107(45), 19237-19241.
[http://dx.doi.org/10.1073/pnas.1009705107] [PMID: 20974912]
[98]
Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease pro-tein. Trends Biochem. Sci., 1997, 22(1), 12-13.
[http://dx.doi.org/10.1016/S0968-0004(96)30046-7] [PMID: 9020585]
[99]
Carling, D.; Sanders, M.J.; Woods, A. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes., 2008, 32, S55-S59.
[http://dx.doi.org/10.1038/ijo.2008.124] [PMID: 18719600]
[100]
Kemp, B.E.; Oakhill, J.S.; Scott, J.W. AMPK struc-ture and regulation from three angles. Structure, 2007, 15(10), 1161-1163.
[http://dx.doi.org/10.1016/j.str.2007.09.006] [PMID: 17937905]
[101]
Bonen, A.; Han, X-X.; Habets, D.D.; Febbraio, M.; Glatz, J.F.; Luiken, J.J. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am. J. Physiol. Endocrinol. Metab., 2007, 292(6), E1740-E1749.
[http://dx.doi.org/10.1152/ajpendo.00579.2006] [PMID: 17264223]
[102]
Morrison, A.; Yan, X.; Tong, C.; Li, J. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(3), H895-H902.
[http://dx.doi.org/10.1152/ajpheart.00137.2011] [PMID: 21666107]
[103]
Sanders, M.J.; Grondin, P.O.; Hegarty, B.D.; Snowden, M.A.; Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J., 2007, 403(1), 139-148.
[http://dx.doi.org/10.1042/BJ20061520] [PMID: 17147517]
[104]
Davies, S.P.; Helps, N.R.; Cohen, P.T.; Hardie, D.G. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C α and native bovine protein phosphatase-2AC. FEBS Lett., 1995, 377(3), 421-425.
[http://dx.doi.org/10.1016/0014-5793(95)01368-7] [PMID: 8549768]
[105]
Suter, M.; Riek, U.; Tuerk, R.; Schlattner, U.; Wallimann, T.; Neumann, D. Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem., 2006, 281(43), 32207-32216.
[http://dx.doi.org/10.1074/jbc.M606357200] [PMID: 16943194]
[106]
Woods, A.; Johnstone, S.R.; Dickerson, K.; Leiper, F.C.; Fryer, L.G.; Neumann, D.; Schlattner, U.; Wallimann, T.; Carlson, M.; Carling, D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol., 2003, 13(22), 2004-2008.
[http://dx.doi.org/10.1016/j.cub.2003.10.031] [PMID: 14614828]
[107]
Brajenovic, M.; Joberty, G.; Küster, B.; Bouwmeester, T.; Drewes, G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J. Biol. Chem., 2004, 279(13), 12804-12811.
[http://dx.doi.org/10.1074/jbc.M312171200] [PMID: 14676191]
[108]
Baas, A.F.; Boudeau, J.; Sapkota, G.P.; Smit, L.; Medema, R.; Morrice, N.A.; Alessi, D.R.; Clevers, H.C. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J., 2003, 22(12), 3062-3072.
[http://dx.doi.org/10.1093/emboj/cdg292] [PMID: 12805220]
[109]
Hawley, S.A.; Pan, D.A.; Mustard, K.J.; Ross, L.; Bain, J.; Edelman, A.M.; Frenguelli, B.G.; Hardie, D.G. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab., 2005, 2(1), 9-19.
[http://dx.doi.org/10.1016/j.cmet.2005.05.009] [PMID: 16054095]
[110]
Momcilovic, M.; Hong, S-P.; Carlson, M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem., 2006, 281(35), 25336-25343.
[http://dx.doi.org/10.1074/jbc.M604399200] [PMID: 16835226]
[111]
Srivastava, R.A.K.; Pinkosky, S.L.; Filippov, S.; Hanselman, J.C.; Cramer, C.T.; Newton, R.S. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J. Lipid Res., 2012, 53(12), 2490-2514.
[http://dx.doi.org/10.1194/jlr.R025882] [PMID: 22798688]
[112]
Liu, Y-Q.; Cheng, X.; Guo, L-X.; Mao, C.; Chen, Y-J.; Liu, H-X.; Xiao, Q-C.; Jiang, S.; Yao, Z-J.; Zhou, G-B. Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS One, 2012, 7(10) e47049
[http://dx.doi.org/10.1371/journal.pone.0047049] [PMID: 23056575]
[113]
Woodard, J.; Platanias, L.C. AMP-activated kinase (AMPK)-generated signals in malignant melanoma cell growth and survival. Biochem. Biophys. Res. Commun., 2010, 398(1), 135-139.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.052] [PMID: 20599746]
[114]
Sonntag, A.G.; Dalle Pezze, P.; Shanley, D.P.; Thedieck, K. A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-dependent kinase (AMPK) by insulin. FEBS J., 2012, 279(18), 3314-3328.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08582.x] [PMID: 22452783]
[115]
Teng, H.; Chen, L.; Fang, T.; Yuan, B.; Lin, Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J. Funct. Foods, 2017, 28, 306-313.
[http://dx.doi.org/10.1016/j.jff.2016.10.033]
[116]
Xi, Y.; Wu, M.; Li, H.; Dong, S.; Luo, E.; Gu, M.; Shen, X.; Jiang, Y.; Liu, Y.; Liu, H. Baicalin attenuates high fat diet-induced obesity and liver dysfunction: dose-response and potential role of CaMKKβ/AMPK/ACC pathway. Cell. Physiol. Biochem., 2015, 35(6), 2349-2359.
[http://dx.doi.org/10.1159/000374037] [PMID: 25896320]
[117]
Xue, B.; Yang, Z.; Wang, X.; Shi, H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One, 2012, 7(10) e45990
[http://dx.doi.org/10.1371/journal.pone.0045990] [PMID: 23071533]
[118]
Kim, M.S.; Hur, H.J.; Kwon, D.Y.; Hwang, J-T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol. Cell. Endocrinol., 2012, 358(1), 127-134.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[119]
Hadrich, F.; Garcia, M.; Maalej, A.; Moldes, M.; Isoda, H.; Feve, B.; Sayadi, S. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci., 2016, 151, 167-173.
[http://dx.doi.org/10.1016/j.lfs.2016.02.027] [PMID: 26872981]
[120]
Krasner, N.M.; Ido, Y.; Ruderman, N.B.; Cacicedo, J.M. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One, 2014, 9(5) e97554
[http://dx.doi.org/10.1371/journal.pone.0097554] [PMID: 24835252]
[121]
Nunes, A.K.S.; Rapôso, C.; Rocha, S.W.S.; Barbosa, K.P.; Luna, R.L.; da Cruz-Höfling, M.A.; Peixoto, C.A. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res., 2015, 1627, 119-133.
[http://dx.doi.org/10.1016/j.brainres.2015.09.008] [PMID: 26404052]
[122]
Soetikno, V.; Sari, F.R.; Sukumaran, V.; Lakshmanan, A.P.; Harima, M.; Suzuki, K.; Kawachi, H.; Watanabe, K. Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J. Nutr. Biochem., 2013, 24(5), 796-802.
[http://dx.doi.org/10.1016/j.jnutbio.2012.04.013] [PMID: 22898567]
[123]
Shang, F.; Zhang, J.; Li, Z.; Zhang, J.; Yin, Y.; Wang, Y.; Marin, T.L.; Gongol, B.; Xiao, H.; Zhang, Y.Y.; Chen, Z.; Shyy, J.Y.; Lei, T. Cardiovascular protective effect of metformin and telmisartan: reduction of PARP1 activity via the AMPK-PARP1 cascade. PLoS One, 2016, 11(3) e0151845
[http://dx.doi.org/10.1371/journal.pone.0151845] [PMID: 26986624]
[124]
Prieto-Hontoria, P.L.; Pérez-Matute, P.; Fernández-Galilea, M.; Alfredo Martínez, J.; Moreno-Aliaga, M.J. Effects of lipoic acid on AMPK and adiponectin in adipose tissue of low- and high-fat-fed rats. Eur. J. Nutr., 2013, 52(2), 779-787.
[http://dx.doi.org/10.1007/s00394-012-0384-7] [PMID: 22664981]
[125]
Niu, Y.; Li, S.; Na, L.; Feng, R.; Liu, L.; Li, Y.; Sun, C. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK. PLoS One, 2012, 7(1)e30782
[http://dx.doi.org/10.1371/journal.pone.0030782] [PMID: 22292039]
[126]
Kim, S-H.; Hwang, J-T.; Park, H.S.; Kwon, D.Y.; Kim, M-S. Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem. Biophys. Res. Commun., 2013, 439(1), 66-70.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.027] [PMID: 23958300]
[127]
Filippov, S.; Pinkosky, S.L.; Lister, R.J.; Pawloski, C.; Hanselman, J.C.; Cramer, C.T.; Srivastava, R.A.K.; Hurley, T.R.; Bradshaw, C.D.; Spahr, M.A.; Newton, R.S. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J. Lipid Res., 2013, 54(8), 2095-2108.
[http://dx.doi.org/10.1194/jlr.M035212] [PMID: 23709692]
[128]
Peterson, J.M.; Aja, S.; Wei, Z.; Wong, G.W. CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition. J. Biol. Chem., 2012, 287(2), 1576-1587.
[http://dx.doi.org/10.1074/jbc.M111.278333] [PMID: 22086915]
[129]
Guan, F.Y.; Gu, J.; Li, W.; Zhang, M.; Ji, Y.; Li, J.; Chen, L.; Hatch, G.M. Compound K protects pancreatic islet cells against apoptosis through inhibition of the AMPK/JNK pathway in type 2 diabetic mice and in MIN6 β-cells. Life Sci., 2014, 107(1-2), 42-49.
[http://dx.doi.org/10.1016/j.lfs.2014.04.034] [PMID: 24802125]
[130]
Tian, S.; Ge, X.; Wu, K.; Yang, H.; Liu, Y. Ramipril protects the endothelium from high glucose-induced dysfunction through CaMKKβ/AMPK and heme oxygenase-1 activation. J. Pharmacol. Exp. Ther., 2014, 350(1), 5-13.
[http://dx.doi.org/10.1124/jpet.114.212928] [PMID: 24741076]
[131]
Kenlan, D.; Rychahou, P.G.; Sviripa, V.; Watt, D.; Evers, B.M. New potent AMPK activators against colorectal cancer stem cells. Proceedings: AACR 106th Annual Meeting, Philadelphia, PA, USA, April 18-22 2015.
[132]
Wang, S-T.; Huang, S-W.; Kao, J-K.; Liang, S-M.; Chen, Y-J.; Chen, Y-Y.; Wu, C-Y.; Shieh, J-J. Imiquimod-induced AMPK activation causes translation attenuation and apoptosis but not autophagy. J. Dermatol. Sci., 2015, 78(2), 108-116.
[http://dx.doi.org/10.1016/j.jdermsci.2015.02.008] [PMID: 25766763]
[133]
Li, R.; Zhou, P.; Guo, Y.; Lee, J-S.; Zhou, B. Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food Chem. Toxicol., 2017, 100, 183-196.
[http://dx.doi.org/10.1016/j.fct.2016.12.029] [PMID: 28025121]
[134]
Salminen, A.; Kauppinen, A.; Kaarniranta, K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J. Mol. Med. (Berl.), 2017, 95(2), 123-131.
[http://dx.doi.org/10.1007/s00109-016-1477-1] [PMID: 27678528]
[135]
Lin, V.C-H.; Tsai, Y-C.; Lin, J-N.; Fan, L-L.; Pan, M-H.; Ho, C-T.; Wu, J-Y.; Way, T-D. Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J. Agric. Food Chem., 2012, 60(25), 6399-6407.
[http://dx.doi.org/10.1021/jf301499e] [PMID: 22670709]
[136]
Law, B.Y.K.; Gordillo-Martínez, F.; Qu, Y.Q.; Zhang, N.; Xu, S.W.; Coghi, P.S.; Mok, S.W.F.; Guo, J.; Zhang, W.; Leung, E.L.H.; Fan, X.X.; Wu, A.G.; Chan, W.K.; Yao, X.J.; Wang, J.R.; Liu, L.; Wong, V.K.W. Thalidezine, a novel AMPK activator, eliminates apoptosis-resistant cancer cells through energy-mediated autophagic cell death. Oncotarget, 2017, 8(18), 30077-30091.
[http://dx.doi.org/10.18632/oncotarget.15616] [PMID: 28404910]
[137]
Chen, Y-C.; Zeng, X-Y.; He, Y.; Liu, H.; Wang, B.; Zhou, H.; Chen, J-W.; Liu, P-Q.; Gu, L-Q.; Ye, J-M.; Huang, Z.S. Rutaecarpine analogues reduce lipid accumulation in adipocytes via inhibiting adipogenesis/lipogenesis with AMPK activation and UPR suppression. ACS Chem. Biol., 2013, 8(10), 2301-2311.
[http://dx.doi.org/10.1021/cb4003893] [PMID: 23962138]
[138]
Chang, W-L.; Hsu, L-C.; Leu, W-J.; Chen, C-S.; Guh, J-H. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget, 2015, 6(37), 39806-39820.
[http://dx.doi.org/10.18632/oncotarget.5655] [PMID: 26447757]
[139]
Shukla, K.; Sonowal, H.; Saxena, A.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibitor, fidarestat regulates mitochondrial biogenesis via Nrf2/HO-1/AMPK pathway in colon cancer cells. Cancer Lett., 2017, 411, 57-63.
[http://dx.doi.org/10.1016/j.canlet.2017.09.031] [PMID: 28986187]
[140]
Cheng, X.; Kim, J.Y.; Ghafoory, S.; Duvaci, T.; Rafiee, R.; Theobald, J.; Alborzinia, H.; Holenya, P.; Fredebohm, J.; Merz, K-H.; Mehrabi, A.; Hafezi, M.; Saffari, A.; Eisenbrand, G.; Hoheisel, J.D.; Wölfl, S. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol. Oncol., 2016, 10(6), 806-824.
[http://dx.doi.org/10.1016/j.molonc.2016.01.008] [PMID: 26887594]
[141]
Zhao, P.; Dou, Y.; Chen, L.; Li, L.; Wei, Z.; Yu, J.; Wu, X.; Dai, Y.; Xia, Y. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria. Fitoterapia, 2015, 104, 31-40.
[http://dx.doi.org/10.1016/j.fitote.2015.05.002] [PMID: 25964188]
[142]
Li, C.; Zhang, C.; Zhou, H.; Feng, Y.; Tang, F.; Hoi, M.P.M.; He, C.; Ma, D.; Zhao, C.; Lee, S.M.Y. Inhibitory effects of betulinic acid on LPS-induced neuroinflammation involve M2 microglial polarization via CaMKKβ-dependent AMPK activation. Front. Mol. Neurosci., 2018, 11, 98.
[http://dx.doi.org/10.3389/fnmol.2018.00098] [PMID: 29666569]
[143]
Chowdhury, W.; Tisha, A.; Akter, S.; Zahur, S.; Hasan, N. The role of arsenic on skin diseases, hair fall and inflammation: an immunological review and case studies. J. Clin. Exp. Dermatol. Res., 2017, 8(384), 2.
[http://dx.doi.org/10.4172/2155-9554.1000384]
[144]
Sagor, M.A.T.; Reza, H.M.; Tabassum, N.; Sikder, B.; Ulla, A.; Subhan, N.; Hemayet, H.M.; Ashraful, A.M. Supplementation of rosemary leaves (Rosmarinus officinalis) powder attenuates oxidative stress, inflammation and fibrosis in carbon tetrachloride (CCl4) treated rats. Curr. Nutr. Food Sci., 2016, 12(4), 288-295.
[http://dx.doi.org/10.2174/1573401312666160816154610]
[145]
Toyokuni, S.; Okamoto, K.; Yodoi, J.; Hiai, H. Persistent oxidative stress in cancer. FEBS Lett., 1995, 358(1), 1-3.
[http://dx.doi.org/10.1016/0014-5793(94)01368-B] [PMID: 7821417]
[146]
McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108(8), 652-659.
[http://dx.doi.org/10.1016/S0002-9343(00)00412-5] [PMID: 10856414]
[147]
Ren, L-P.; Chan, S.M.; Zeng, X-Y.; Laybutt, D.R.; Iseli, T.J.; Sun, R-Q.; Kraegen, E.W.; Cooney, G.J.; Turner, N.; Ye, J-M. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS One, 2012, 7(2) e30816
[http://dx.doi.org/10.1371/journal.pone.0030816] [PMID: 22355328]
[148]
Pessayre, D. Role of mitochondria in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2007, 22(Suppl. 1), S20-S27.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04640.x] [PMID: 17567459]
[149]
Sagor, M.A.T.; Reza, H.M.; Tabassum, N.; Rahman, M.M.; Alam, M.A. Fresh bitter melon fruit (Momordica charantia) attenuated oxidative stress, fibrosis and renal injury in carbon tetrachloride treated rats. Dhaka Uni. J. Pharm. Sci., 2018, 16(2), 205-214.
[http://dx.doi.org/10.3329/dujps.v16i2.35258]
[150]
Al-Amin, M.M.; Reza, H.M.; Saadi, H.M.; Mahmud, W.; Ibrahim, A.A.; Alam, M.M.; Kabir, N.; Saifullah, A.R.; Tropa, S.T.; Quddus, A.H. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. Eur. J. Pharmacol., 2016, 777, 60-69.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.062] [PMID: 26927754]
[151]
Chowdhury, W.; Arbee, S.; Debnath, S.; Bin Zahur, S.; Akter, S. Potent role of antioxidant molecules in prevention and management of skin cancer. J. Clin. Exp. Dermatol. Res., 2017, 8(3), 1-7.
[152]
Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Folsom, A.R.; Heiss, G. Atherosclerosis risk in communities study. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes, 2003, 52(7), 1799-1805.
[http://dx.doi.org/10.2337/diabetes.52.7.1799] [PMID: 12829649]
[153]
Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542(7640), 177-185.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[154]
Prattichizzo, F.; De Nigris, V.; Spiga, R.; Mancuso, E.; La Sala, L.; Antonicelli, R.; Testa, R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res. Rev., 2018, 41, 1-17.
[http://dx.doi.org/10.1016/j.arr.2017.10.003] [PMID: 29081381]
[155]
Yan, S.F.; Ramasamy, R.; Schmidt, A.M. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat. Clin. Pract. Endocrinol. Metab., 2008, 4(5), 285-293.
[http://dx.doi.org/10.1038/ncpendmet0786] [PMID: 18332897]
[156]
Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; La Sala, L.; Rippo, M.R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol., 2018, 15, 170-181.
[http://dx.doi.org/10.1016/j.redox.2017.12.001] [PMID: 29253812]
[157]
McDaniel, M.L.; Kwon, G.; Hill, J.R.; Marshall, C.A.; Corbett, J.A. Cytokines and nitric oxide in islet inflammation and diabetes. Proc. Soc. Exp. Biol. Med., 1996, 211(1), 24-32.
[http://dx.doi.org/10.3181/00379727-211-43950D] [PMID: 8594615]
[158]
Biondi-Zoccai, G.G.; Abbate, A.; Liuzzo, G.; Biasucci, L.M. Atherothrombosis, inflammation, and diabetes. J. Am. Coll. Cardiol., 2003, 41(7), 1071-1077.
[http://dx.doi.org/10.1016/S0735-1097(03)00088-3] [PMID: 12679203]
[159]
Hartge, M.M.; Unger, T.; Kintscher, U. The endothelium and vascular inflammation in diabetes. Diab. Vasc. Dis. Res., 2007, 4(2), 84-88.
[http://dx.doi.org/10.3132/dvdr.2007.025] [PMID: 17654441]
[160]
Stienstra, R.; Duval, C.; Müller, M.; Kersten, S. PPARs, obesity, and inflammation. PPAR Research., 2007, 2007, 1-10.
[http://dx.doi.org/10.1155/2007/95974]
[161]
Salvatore, S.P.; Chevalier, J.M.; Kuo, S.F.; Audia, P.F.; Seshan, S.V. Kidney disease in patients with obesity: It is not always obesity-related glomerulopathy alone. Obes. Res. Clin. Pract., 2017, 11(5), 597-606.
[http://dx.doi.org/10.1016/j.orcp.2017.04.003] [PMID: 28442280]
[162]
Tikellis, C.; Thomas, M.C.; Harcourt, B.E.; Coughlan, M.T.; Pete, J.; Bialkowski, K.; Tan, A.; Bierhaus, A.; Cooper, M.E.; Forbes, J.M. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am. J. Physiol. Endocrinol. Metab., 2008, 295(2), E323-E330.
[http://dx.doi.org/10.1152/ajpendo.00024.2008] [PMID: 18477705]
[163]
Taniguchi, Y.; Yoshioka, N.; Nakata, K.; Nishizawa, T.; Inagawa, H.; Kohchi, C.; Soma, G. Mechanism for maintaining homeostasis in the immune system of the intestine. Anticancer Res., 2009, 29(11), 4855-4860.
[PMID: 20032447]
[164]
Forsythe, L.K.; Wallace, J.M.; Livingstone, M.B.E. Obesity and inflammation: the effects of weight loss. Nutr. Res. Rev., 2008, 21(2), 117-133.
[http://dx.doi.org/10.1017/S0954422408138732] [PMID: 19087366]
[165]
Dixon, J.B. The effect of obesity on health outcomes. Mol. Cell. Endocrinol., 2010, 316(2), 104-108.
[http://dx.doi.org/10.1016/j.mce.2009.07.008] [PMID: 19628019]
[166]
Sagor, M.A.T.; Rabbi, M.G.; Rahman, M.M.; Islam, M.; Rahman, M.T.; Mohib, M.M.; Khan, M.M.R.; Alam, M.A. Chronic kidney disease might lead to hepatic dysfunction on a chronic hypertensive rat model study. World J Pharm Res, 2015, 4(11), 1939-1956.
[167]
Mehta, A.; Patel, J.; Al Rifai, M.; Ayers, C.R.; Neeland, I.J.; Kanaya, A.M.; Kandula, N.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Joshi, P.H. Inflammation and coronary artery calcification in South Asians: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) study. Atherosclerosis, 2018, 270, 49-56.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.033] [PMID: 29407888]
[168]
Mathieu, P.; Lemieux, I.; Després, J.P. Obesity, inflammation, and cardiovascular risk. Clin. Pharmacol. Ther., 2010, 87(4), 407-416.
[http://dx.doi.org/10.1038/clpt.2009.311] [PMID: 20200516]
[169]
Chowdhury, N.U.; Tisha, A.; Sarker, J.; Nath, P.D.; Ahmed, N.; Abdullah, S.; Farooq, T.; Mahmud, W.; Mohib, M.M.; Sagor, M.A.T. Targeting inducible Nitric Oxide Synthase (iNOS) in the prevention of vascular damage and cardiac inflammation. J. Angiotherapy, 2018, 2(1), 067-077.
[170]
Biddle, M.; Moser, D.; Song, E.K.; Heo, S.; Payne-Emerson, H.; Dunbar, S.B.; Pressler, S.; Lennie, T. Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure. Eur. J. Cardiovasc. Nurs., 2013, 12(4), 377-384.
[http://dx.doi.org/10.1177/1474515112459601] [PMID: 23076979]
[171]
Lörchner, H.; Widera, C.; Hou, Y.; Elsässer, A.; Warnecke, H.; Giannitsis, E.; Hulot, J-S.; Braun, T.; Wollert, K.C.; Pöling, J. Reg3β is associated with cardiac inflammation and provides prognostic information in patients with acute coronary syndrome. Int. J. Cardiol., 2018, 258, 7-13.
[http://dx.doi.org/10.1016/j.ijcard.2018.01.043] [PMID: 29544958]
[172]
Gan, W.; Ren, J.; Li, T.; Lv, S.; Li, C.; Liu, Z.; Yang, M. The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(1), 1-10.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.001] [PMID: 28986310]
[173]
Reza, H.M.; Tabassum, N.; Sagor, M.A.T.; Chowdhury, M.R.H.; Rahman, M.; Jain, P.; Alam, M.A. Angiotensin-converting enzyme inhibitor prevents oxidative stress, inflammation, and fibrosis in carbon tetrachloride-treated rat liver. Toxicol. Mech. Methods, 2016, 26(1), 46-53.
[http://dx.doi.org/10.3109/15376516.2015.1124956] [PMID: 26862777]
[174]
Reza, H.M.; Sagor, M.A.T.; Alam, M.A. Iron deposition causes oxidative stress, inflammation and fibrosis in carbon tetrachloride-induced liver dysfunction in rats. Bangladesh J. Pharmacol., 2015, 10(1), 152-159.
[http://dx.doi.org/10.3329/bjp.v10i1.21711]
[175]
Szabo, G.; Mandrekar, P.; Dolganiuc, A. Innate immune response and hepatic inflammation. In: Seminars in liver disease: 2007; Thieme Medical Publishers, 2007; pp. 339-350.
[http://dx.doi.org/10.1055/s-2007-991511]
[176]
Marzeea, A.R.; Abida, T.; Salma, K.; Tasfiq, Z.P.; Nowshin, A.; Mohammad, M.M.; Md, A.T.S.; Sarif, M. Inhibitory role of resveratrol in the development of profibrogenesis and fibrosis mechanisms. Immunol. Endocr. Metab. Agents Med. Chem., 2018, 18(1), 80-104.
[http://dx.doi.org/10.2174/1871522218666180523102923]
[177]
Sagor, A.T.; Chowdhury, M.R.H.; Tabassum, N.; Hossain, H.; Rahman, M.M.; Alam, M.A. Supplementation of fresh ucche (Momordica charantia L. var. muricata Wild) prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. BMC Complement. Altern. Med., 2015, 15(1), 115.
[http://dx.doi.org/10.1186/s12906-015-0636-1] [PMID: 25884170]
[178]
Chowdhury, M.R.H.; Sagor, M.A.T.; Tabassum, N.; Potol, M.A.; Hossain, H.; Alam, M.A. Supplementation of Citrus maxima peel powder prevented oxidative stress, fibrosis, and hepatic damage in carbon tetrachloride (CCl4) treated rats. Evid. Based Complement. Alternat. Med., 2015, 2015 598179
[179]
Edens, M.A.; Kuipers, F.; Stolk, R.P. Non‐alcoholic fatty liver disease is associated with cardiovascular disease risk markers. Obesity. Rev., 2009, 10(4), 412-419.
[180]
Tsochatzis, E.A.; Papatheodoridis, G.V. Is there any progress in the treatment of non-alcoholic fatty liver disease? World J. Gastrointest. Pharmacol. Ther., 2011, 2(1), 1-5.
[http://dx.doi.org/10.4292/wjgpt.v2.i1.1] [PMID: 21577310]
[181]
Mahmud, L.S.M.; Tisha, A.; Sagor, A.T. A compre-hensive review on effective role of Apple polyphenols in the treatment of obesity, diabetes, and liver dys-functions with some possible molecular mechanisms., 2018.
[182]
Park, K.M.; Kim, J.I.; Ahn, Y.; Bonventre, A.J.; Bonventre, J.V. Testosterone is responsible for en-hanced susceptibility of males to ischemic renal inju-ry. J. Biol. Chem., 2004, 279(50), 52282-52292.
[http://dx.doi.org/10.1074/jbc.M407629200] [PMID: 15358759]
[183]
Stenvinkel, P.; Wanner, C.; Metzger, T.; Heimbürger, O.; Mallamaci, F.; Tripepi, G.; Malatino, L.; Zoccali, C. Inflammation and outcome in end-stage renal fail-ure: does female gender constitute a survival ad-vantage? Kidney Int., 2002, 62(5), 1791-1798.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00637.x] [PMID: 12371981]
[184]
Daemen, M.A.; de Vries, B.; Buurman, W.A. Apop-tosis and inflammation in renal reperfusion injury. Transplantation, 2002, 73(11), 1693-1700.
[http://dx.doi.org/10.1097/00007890-200206150-00001] [PMID: 12084988]
[185]
Lorenz, G.; Darisipudi, M.N.; Anders, H-J. Canoni-cal and non-canonical effects of the NLRP3 inflam-masome in kidney inflammation and fibrosis. Nephrol. Dial. Transplant., 2014, 29(1), 41-48.
[http://dx.doi.org/10.1093/ndt/gft332] [PMID: 24026244]
[186]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[187]
Sancho, D.; Reis e Sousa, C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol., 2012, 30, 491-529.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101352] [PMID: 22224766]
[188]
Rutherford, C.; Speirs, C.; Williams, J.J.L.; Ewart, M-A.; Mancini, S.J.; Hawley, S.A.; Delles, C.; Viollet, B.; Costa-Pereira, A.P.; Baillie, G.S.; Salt, I.P.; Palm-er, T.M. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci. Signal., 2016, 9(453), ra109.
[http://dx.doi.org/10.1126/scisignal.aaf8566] [PMID: 27919027]
[189]
Galic, S.; Fullerton, M.D.; Schertzer, J.D.; Sikkema, S.; Marcinko, K.; Walkley, C.R.; Izon, D.; Honey-man, J.; Chen, Z-P.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest., 2011, 121(12), 4903-4915.
[http://dx.doi.org/10.1172/JCI58577] [PMID: 22080866]
[190]
Stojanovic, B.; Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Strazic Geljic, I.; Arsenijevic, N.; Jon-jic, S.; Lukic, M.L.; Milovanovic, M. Galectin-3 defi-ciency facilitates TNF-α-dependent hepatocyte death and liver inflammation in MCMV infection. Front. Microbiol., 2019, 10, 185.
[http://dx.doi.org/10.3389/fmicb.2019.00185] [PMID: 30800112]
[191]
Means, R.T. Anemia of renal failure/chronic kidney disease. Anemia in the Young and Old; Springer, 2019, pp. 147-156.
[http://dx.doi.org/10.1007/978-3-319-96487-4_8]
[192]
Boeckel, J-N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; Lackner, M.K.; Kayvanpour, E.; Grabe, N.; Dieterich, C.; von Haehling, S.; Ebner, N.; Hünecke, S.; Leuschner, F.; Fichtlscherer, S.; Meder, B.; Zeiher, A.M.; Dimmeler, S.; Keller, T. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell. Cardiol., 2019, 126, 13-22.
[http://dx.doi.org/10.1016/j.yjmcc.2018.11.004] [PMID: 30445017]
[193]
Jialal, I.; Chaudhuri, A. Targeting inflammation to reduce ASCVD in type 2 diabetes. J. Diabetes Complications, 2019, 33(1), 1-3.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.11.001] [PMID: 30514609]
[194]
Kim, Y.M.; Kim, J.H.; Park, S.W.; Kim, H.J.; Chang, K.C. Retinoic acid inhibits tissue factor and HMGB1 via modulation of AMPK activity in TNF-α activated endothelial cells and LPS-injected mice. Atherosclerosis, 2015, 241(2), 615-623.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.016] [PMID: 26116962]
[195]
Hsu, W-H.; Chen, T-H.; Lee, B-H.; Hsu, Y-W.; Pan, T-M. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol., 2014, 64, 94-103.
[http://dx.doi.org/10.1016/j.fct.2013.11.015] [PMID: 24275089]
[196]
Dinarello, C.A. Treatment of inflammatory diseases with IL-1 blockade. Curr. Otorhinolaryngol. Rep., 2018, 6(1), 1-14.
[http://dx.doi.org/10.1007/s40136-018-0181-9]
[197]
Alaverdi, N.; Sehy, D. Cytokines-master regulators of the immune system. eBioscience Archived from the original (PDF) on 2006, 03-15
[198]
Cudrici, C.D.; Pelletier, M.; Siegel, R.M. 01.16 Amp-activated protein kinase: An anti-inflammatory target for methotrexate in macrophages. Ann. Rheum. Dis., 2017, 76(Suppl. 1), A7-A8.
[199]
Kelly, B.; Tannahill, G.M.; Murphy, M.P.; O’Neill, L.A. Metformin inhibits the production of reactive oxygen species from NADH: ubiquinone oxidoreduc-tase to limit induction of IL-1β, and boosts IL-10 in LPS-activated macrophages. J. Biol. Chem., 2015, M115-M662114.
[200]
Zhu, Y.P.; Brown, J.R.; Sag, D.; Zhang, L.; Suttles, J. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J. Immunol., 2015, 194(2), 584-594.
[http://dx.doi.org/10.4049/jimmunol.1401024] [PMID: 25512602]
[201]
Nithipatikom, K.; Campbell, W.B. Roles of eico-sanoids in prostate cancer. Future Lipidol., 2008, 3(4), 453-467.
[http://dx.doi.org/10.2217/17460875.3.4.453] [PMID: 24563660]
[202]
Jeong, G-S.; Lee, D-S.; Li, B.; Kim, J-J.; Kim, E-C.; Kim, Y-C. Anti-inflammatory effects of lin-denenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells. Eur. J. Pharmacol., 2011, 670(1), 295-303.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.008] [PMID: 21910986]
[203]
Ashabi, G.; Khalaj, L.; Khodagholi, F.; Goudarzvand, M.; Sarkaki, A. Pre-treatment with metformin acti-vates Nrf2 antioxidant pathways and inhibits inflam-matory responses through induction of AMPK after transient global cerebral ischemia. Metab. Brain Dis., 2015, 30(3), 747-754.
[http://dx.doi.org/10.1007/s11011-014-9632-2] [PMID: 25413451]
[204]
Zhou, Y.; Liu, S-Q.; Yu, L.; He, B.; Wu, S-H.; Zhao, Q.; Xia, S-Q.; Mei, H-J. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis, 2015, 20(9), 1187-1199.
[http://dx.doi.org/10.1007/s10495-015-1152-y] [PMID: 26184498]
[205]
Place, D.E.; Kanneganti, T-D. Recent advances in inflammasome biology. Curr. Opin. Immunol., 2018, 50, 32-38.
[http://dx.doi.org/10.1016/j.coi.2017.10.011] [PMID: 29128729]
[206]
Lv, H.; Liu, Q.; Wen, Z.; Feng, H.; Deng, X.; Ci, X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol., 2017, 12, 311-324.
[http://dx.doi.org/10.1016/j.redox.2017.03.001] [PMID: 28285192]
[207]
Wu, J.; Xu, X.; Li, Y.; Kou, J.; Huang, F.; Liu, B.; Liu, K. Quercetin, luteolin and epigallocatechin gal-late alleviate TXNIP and NLRP3-mediated inflamma-tion and apoptosis with regulation of AMPK in endo-thelial cells. Eur. J. Pharmacol., 2014, 745, 59-68.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.046] [PMID: 25446924]
[208]
Song, J.; Li, J.; Hou, F.; Wang, X.; Liu, B. Mangifer-in inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflam-masome activation with regulation of AMPK in endo-thelial cells. Metabolism, 2015, 64(3), 428-437.
[http://dx.doi.org/10.1016/j.metabol.2014.11.008] [PMID: 25499441]
[209]
Zimmermann, K.; Baldinger, J.; Mayerhofer, B.; At-anasov, A.G.; Dirsch, V.M.; Heiss, E.H. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic. Biol. Med., 2015, 88(Pt B), 417-426.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.03 0] [PMID: 25843659]
[210]
Park, S.Y.; Jin, M.L.; Chae, S.Y.; Ko, M.J.; Choi, Y.H.; Park, G.; Choi, Y-W. Novel compound from Polygonum multiflorum inhibits inflammatory re-sponse in LPS-stimulated microglia by upregulating AMPK/Nrf2 pathways. Neurochem. Int., 2016, 100, 21-29.
[http://dx.doi.org/10.1016/j.neuint.2016.08.006] [PMID: 27545975]
[211]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651-a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[212]
Inui, T.; Watanabe, M.; Nakamoto, K.; Sada, M.; Hirata, A.; Nakamura, M.; Honda, K.; Ogawa, Y.; Takata, S.; Yokoyama, T. Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: A po-tential role in the pathogenesis of COPD. Exp. Lung Res., 2019, 1-9.
[213]
McLachlan, D.R.C.; Bergeron, C.; Alexandrov, P.N.; Walsh, W.J.; Pogue, A.I.; Percy, M.E.; Kruck, T.P.A.; Fang, Z.; Sharfman, N.M.; Jaber, V.; Zhao, Y.; Li, W.; Lukiw, W.J. Aluminum in Neurological and Neu-rodegenerative Disease. Mol. Neurobiol., 2019, 56(2), 1531-1538.
[http://dx.doi.org/10.1007/s12035-018-1441-x] [PMID: 30706368]
[214]
Zhao, K.; Wen, L.B. DMF attenuates cisplatin-induced kidney injury via activating Nrf2 signaling pathway and inhibiting NF-kB signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(24), 8924-8931.
[PMID: 30575936]
[215]
Park, S.Y.; Jin, M.L.; Wang, Z.; Park, G.; Choi, Y-W. 2,3,4′,5-tetrahydroxystilbene-2-O-β-d-glucoside exerts anti-inflammatory effects on lipopolysaccha-ride-stimulated microglia by inhibiting NF-κB and ac-tivating AMPK/Nrf2 pathways. Food Chem. Toxicol., 2016, 97, 159-167.
[http://dx.doi.org/10.1016/j.fct.2016.09.010] [PMID: 27621050]
[216]
Hwang, J-T.; Park, O.J.; Lee, Y.K.; Sung, M.J.; Hur, H.J.; Kim, M.S.; Ha, J.H.; Kwon, D.Y. Anti-tumor ef-fect of luteolin is accompanied by AMP-activated protein kinase and nuclear factor-κB modulation in HepG2 hepatocarcinoma cells. Int. J. Mol. Med., 2011, 28(1), 25-31.
[PMID: 21468539]
[217]
Zhu, M.; Flynt, L.; Ghosh, S.; Mellema, M.; Banerjee, A.; Williams, E.; Panettieri, R.A.; Shore, S.A. Anti-inflammatory effects of thiazolidinediones in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2011, 45(1), 111-119.
[http://dx.doi.org/10.1165/rcmb.2009-0445OC] [PMID: 20870897]
[218]
Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediat-ed by ampk activation.Biochem. Pharmacol; , 2013, 85, pp. (9)1341-1351.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008] [PMID: 23416115]
[219]
Benhaddou-Andaloussi, A.; Martineau, L.; Vuong, T.; Meddah, B.; Madiraju, P.; Settaf, A.; Haddad, P.S. The in vivo antidiabetic activity of Nigella sativa is medi-ated through activation of the AMPK pathway and in-creased muscle Glut4 content. Evid. Based Complement. Alternat. Med., 2011, 2011 538671
[220]
Prattichizzo, F.; Giuliani, A.; Mensà, E.; Sabbatinelli, J.; De Nigris, V.; Rippo, M.R.; La Sala, L.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Pleiotropic effects of metformin: shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res. Rev., 2018, 48, 87-98.
[http://dx.doi.org/10.1016/j.arr.2018.10.003] [PMID: 30336272]
[221]
Gurău, F.; Baldoni, S.; Prattichizzo, F.; Espinosa, E.; Amenta, F.; Procopio, A.D.; Albertini, M.C.; Bonafè, M.; Olivieri, F. Anti-senescence compounds: A po-tential nutraceutical approach to healthy aging. Ageing Res. Rev., 2018, 46, 14-31.
[http://dx.doi.org/10.1016/j.arr.2018.05.001] [PMID: 29742452]
[222]
Surmi, B.K.; Hasty, A.H. Macrophage infiltration into adipose tissue: initiation, propagation and remodel-ing. Future Lipidol., 2008, 3(5), 545-556.
[http://dx.doi.org/10.2217/17460875.3.5.545] [PMID: 18978945]
[223]
Yang, J.; Leng, J.; Li, J-J.; Tang, J.F.; Li, Y.; Liu, B-L.; Wen, X-D. Corosolic acid inhibits adipose tissue inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice. Phytomedicine, 2016, 23(2), 181-190.
[http://dx.doi.org/10.1016/j.phymed.2015.12.018] [PMID: 26926180]
[224]
Liu, G.; Wu, K.; Zhang, L.; Dai, J.; Huang, W.; Lin, L.; Ge, P.; Luo, F.; Lei, H. Metformin attenuated en-dotoxin-induced acute myocarditis via activating AMPK. Int. Immunopharmacol., 2017, 47, 166-172.
[http://dx.doi.org/10.1016/j.intimp.2017.04.002] [PMID: 28410530]
[225]
Vaez, H.; Najafi, M.; Rameshrad, M.; Toutounchi, N.S.; Garjani, M.; Barar, J.; Garjani, A. AMPK acti-vation by metformin inhibits local innate immune re-sponses in the isolated rat heart by suppression of TLR 4-related pathway. Int. Immunopharmacol., 2016, 40, 501-507.
[http://dx.doi.org/10.1016/j.intimp.2016.10.002] [PMID: 27756052]
[226]
Zhang, M.; Fang, W-Y.; Qu, X-K.; Yuan, F.; Wang, W-G.; Fei, J.; Wang, Z-G. AMPK activity is down-regulated in endothelial cells of GHS-R(-/-) mice. Int. J. Clin. Exp. Pathol., 2013, 6(9), 1770-1780.
[PMID: 24040441]
[227]
Aoki, C.; Hattori, Y.; Tomizawa, A.; Jojima, T.; Ka-sai, K. Anti-inflammatory role of cilostazol in vascu-lar smooth muscle cells in vitro and in vivo. J. Atheroscler. Thromb., 2010, 17(5), 503-509.
[http://dx.doi.org/10.5551/jat.3392] [PMID: 20179359]
[228]
Lee, Y.Y.; Park, J-S.; Lee, E-J.; Lee, S-Y.; Kim, D-H.; Kang, J.L.; Kim, H-S. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lip-opolysaccharide-stimulated microglia: critical role of 5′-adenosine monophosphate-activated protein kinase signaling pathway. J. Agric. Food Chem., 2015, 63(13), 3472-3480.
[http://dx.doi.org/10.1021/jf506110y] [PMID: 25798758]
[229]
Park, S.Y.; Jin, M.L.; Ko, M.J.; Park, G.; Choi, Y-W. Anti-neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 ac-tivation. Neurochem. Res., 2016, 41(11), 2981-2992.
[http://dx.doi.org/10.1007/s11064-016-2018-6] [PMID: 27538959]
[230]
Chi, Y.; Li, K.; Yan, Q.; Koizumi, S.; Shi, L.; Takahashi, S.; Zhu, Y.; Matsue, H.; Takeda, M.; Kitamura, M.; Yao, J. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase. J. Pharmacol. Exp. Ther., 2011, 339(1), 257-266.
[http://dx.doi.org/10.1124/jpet.111.183020] [PMID: 21765041]
[231]
He, C.; Li, H.; Viollet, B.; Zou, M.H.; Xie, Z. AMPK suppresses vascular inflammation in vivo by inhibit-ing signal transducer and activator of transcription-1. Diabetes, 2015, 64(12), 4285-4297.
[232]
Choi, I-Y.; Ju, C.; Anthony, J.A.M.; Lee, D.I.; Pra-ther, P.L.; Kim, W-K. Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway re-duces cerebral ischemic injury. Am. J. Pathol., 2013, 182(3), 928-939.
[http://dx.doi.org/10.1016/j.ajpath.2012.11.024] [PMID: 23414569]
[233]
Lee, D-H.; Lee, T.H.; Jung, C.H.; Kim, Y-H. Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell. Signal., 2012, 24(11), 2216-2225.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.019] [PMID: 22846543]
[234]
Li, Y.; Yang, J.; Chen, M-H.; Wang, Q.; Qin, M-J.; Zhang, T.; Chen, X-Q.; Liu, B-L.; Wen, X-D. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol. Res., 2015, 99, 101-115.
[http://dx.doi.org/10.1016/j.phrs.2015.05.012] [PMID: 26054569]
[235]
Vingtdeux, V.; Chandakkar, P.; Zhao, H.; d’Abramo, C.; Davies, P.; Marambaud, P. Novel synthetic small-molecule activators of AMPK as enhancers of au-tophagy and amyloid-β peptide degradation. FASEB J., 2011, 25(1), 219-231.
[http://dx.doi.org/10.1096/fj.10-167361] [PMID: 20852062]
[236]
Bess, E.; Fisslthaler, B.; Frömel, T.; Fleming, I. Nitric oxide-induced activation of the AMP-activated pro-tein kinase α2 subunit attenuates IκB kinase activity and inflammatory responses in endothelial cells. PLoS One, 2011, 6(6) e20848
[http://dx.doi.org/10.1371/journal.pone.0020848] [PMID: 21673972]
[237]
Goodyear, L.J. The exercise pill--too good to be true? N. Engl. J. Med., 2008, 359(17), 1842-1844.
[http://dx.doi.org/10.1056/NEJMcibr0806723] [PMID: 18946072]
[238]
Fabianowska-Majewska, K.; Duley, J.A.; Simmonds, H.A. Effects of novel anti-viral adenosine analogues on the activity of S-adenosylhomocysteine hydrolase from human liver. Biochem. Pharmacol., 1994, 48(5), 897-903.
[http://dx.doi.org/10.1016/0006-2952(94)90360-3] [PMID: 8093102]
[239]
Charton, J.; Girault-Mizzi, S.; Debreu-Fontaine, M-A.; Foufelle, F.; Hainault, I.; Bizot-Espiard, J-G.; Caignard, D-H.; Sergheraert, C. Synthesis and biolog-ical evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg. Med. Chem., 2006, 14(13), 4490-4518.
[http://dx.doi.org/10.1016/j.bmc.2006.02.028] [PMID: 16513356]
[240]
Chen, Y.; Zhou, K.; Wang, R.; Liu, Y.; Kwak, Y-D.; Ma, T.; Thompson, R.C.; Zhao, Y.; Smith, L.; Gaspa-rini, L.; Luo, Z.; Xu, H.; Liao, F.F. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3907-3912.
[http://dx.doi.org/10.1073/pnas.0807991106] [PMID: 19237574]
[241]
Jin, H-E.; Hong, S-S.; Choi, M-K.; Maeng, H-J.; Kim, D-D.; Chung, S-J.; Shim, C-K. Reduced anti-diabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharm. Res., 2009, 26(3), 549-559.
[http://dx.doi.org/10.1007/s11095-008-9770-5] [PMID: 19002567]
[242]
Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; Zhao, G.; Marsh, K.; Kym, P.; Jung, P.; Camp, H.S.; Frevert, E. Identification and characteri-zation of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab., 2006, 3(6), 403-416.
[http://dx.doi.org/10.1016/j.cmet.2006.05.005] [PMID: 16753576]
[243]
Scott, J.W.; van Denderen, B.J.W.; Jorgensen, S.B.; Honeyman, J.E.; Steinberg, G.R.; Oakhill, J.S.; Iseli, T.J.; Koay, A.; Gooley, P.R.; Stapleton, D.; Kemp, B.E. Thienopyridone drugs are selective activators of AMP-activated protein kinase β1-containing com-plexes. Chem. Biol., 2008, 15(11), 1220-1230.
[http://dx.doi.org/10.1016/j.chembiol.2008.10.005] [PMID: 19022182]

© 2025 Bentham Science Publishers | Privacy Policy