Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dyslipidaemias and Cardiovascular Disease: Focus on the Role of PCSK9 Inhibitors

Author(s): Olga Panagiotopoulou, Scott T. Chiesa, Dimitrios Tousoulis and Marietta Charakida*

Volume 27, Issue 27, 2020

Page: [4494 - 4521] Pages: 28

DOI: 10.2174/0929867326666190827151012

Price: $65

Abstract

Genetic, experimental and clinical studies have consistently confirmed that inhibition of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) can result in significant lowering of LDL-C and two fully human PCSK9 monoclonal antibodies have received regulatory approval for use in highrisk patients. Co-administration of PCSK9 with statins has resulted in extremely low LDL-C levels with excellent short-term safety profiles. While results from Phase III clinical trials provided significant evidence about the role of PCSK9 inhibitors in reducing cardiovascular event rates, their impact on mortality remains less clear. PCSK9 inhibitor therapy can be considered for high-risk patients who are likely to experience significant cardiovascular risk reduction.

Keywords: PCSK9, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9), alirocumab, evolocumab, LDLcholesterol, monoclonal antibodies.

[1]
Chen, Z.; Peto, R.; Collins, R.; MacMahon, S.; Lu, J.; Li, W. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations. BMJ, 1991, 303(6797), 276-282.
[http://dx.doi.org/10.1136/bmj.303.6797.276] [PMID: 1888927]
[2]
Stamler, J.; Vaccaro, O.; Neaton, J.D.; Wentworth, D.; Group, M.R.F.I.T.R. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care, 1993, 16(2), 434-444.
[http://dx.doi.org/10.2337/diacare.16.2.434] [PMID: 8432214]
[3]
Austin, M.A.; Hutter, C.M.; Zimmern, R.L.; Humphries, S.E. Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am. J. Epidemiol., 2004, 160(5), 421-429.
[http://dx.doi.org/10.1093/aje/kwh237] [PMID: 15321838]
[4]
Ference, B.A.; Yoo, W.; Alesh, I.; Mahajan, N.; Mirowska, K.K.; Mewada, A.; Kahn, J.; Afonso, L.; Williams, K.A., Sr; Flack, J.M. Effect of long-term exposure to lower low density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol., 2012, 60(25), 2631-2639.
[http://dx.doi.org/10.1016/j.jacc.2012.09.017] [PMID: 23083789]
[5]
Kazi, D.S.; Penko, J.M.; Bibbins-Domingo, K. Statins for primary prevention of cardiovascular disease: review of evidence and recommendations for clinical practice. Med. Clin. North Am., 2017, 101(4), 689-699.
[http://dx.doi.org/10.1016/j.mcna.2017.03.001] [PMID: 28577620]
[6]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M.R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L.; Cooney, M.T. ESC Scientific Document Group.. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J., 2016, 37(39), 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[7]
Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta analysis. BMJ, 2003, 326(7404), 1423.
[http://dx.doi.org/10.1136/bmj.326.7404.1423] [PMID: 12829554]
[8]
National Clinical Guideline Centre (UK) Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease, National Institute for Health and Care Excellence (UK). 2014.
[PMID: 25340243]
[9]
Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; Simes, R. Cholesterol Treatment Trialists’ (CTT) Collaborators.. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 2005, 366(9493), 1267-1278.
[http://dx.doi.org/10.1016/S0140-6736(05)67394-1] [PMID: 16214597]
[10]
Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; Braunwald, E.; La Rosa, J.; Pedersen, T.R.; Tonkin, A.; Davis, B.; Sleight, P.; Franzosi, M.G.; Baigent, C.; Keech, A. Cholesterol Treatment Trialists’ (CTT) Collaboration.. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet, 2015, 385(9976), 1397-1405.
[http://dx.doi.org/10.1016/S0140-6736(14)61368-4] [PMID: 25579834]
[11]
Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J., Jr; Grover, S.; Gupta, M.; Hegele, R.A.; Lau, D.C.; Leiter, L.A.; Lonn, E.; Mancini, G.B.; McPherson, R.; Ngui, D.; Poirier, P.; Sievenpiper, J.L.; Stone, J.A.; Thanassoulis, G.; Ward, R. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol., 2016, 32(11), 1263-1282.
[http://dx.doi.org/10.1016/j.cjca.2016.07.510] [PMID: 27712954]
[12]
Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; Wilson, D.P.; Brown, W.V. National lipid association recommendations for patient-centered management of dyslipidemia: part 1-full report. J. Clin. Lipidol., 2015, 9(2), 129-169.
[http://dx.doi.org/10.1016/j.jacl.2015.02.003] [PMID: 25911072]
[13]
Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Daly, D.D., Jr; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C., Jr; Committee, W. Writing Committee.. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk. J. Am. Coll. Cardiol., 2016, 68(1), 92-125.
[http://dx.doi.org/10.1016/j.jacc.2016.03.519] [PMID: 27046161]
[14]
Rabar, S.; Harker, M.; O'flynn, N.; Wierzbicki, A. S. Guideline Development Group. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance BMJ,, 2014, 349, g4356.
[http://dx.doi.org/10.1136/bmj.g4356] [PMID: 25035388]
[15]
Boekholdt, S.M.; Hovingh, G.K.; Mora, S.; Arsenault, B.J.; Amarenco, P.; Pedersen, T.R.; LaRosa, J.C.; Waters, D.D.; DeMicco, D.A.; Simes, R.J.; Keech, A.C.; Colquhoun, D.; Hitman, G.A.; Betteridge, D.J.; Clearfield, M.B.; Downs, J.R.; Colhoun, H.M.; Gotto, A.M., Jr; Ridker, P.M.; Grundy, S.M.; Kastelein, J.J. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J. Am. Coll. Cardiol., 2014, 64(5), 485-494.
[http://dx.doi.org/10.1016/j.jacc.2014.02.615] [PMID: 25082583]
[16]
Goodman, S.G.; Langer, A.; Bastien, N.R.; McPherson, R.; Francis, G.A.; Genest, J.J., Jr; Leiter, L.A.; Investigators, D.C. DYSIS Canadian Investigators.. Prevalence of dyslipidemia in statin-treated patients in Canada: results of the dyslipidemia international study (DYSIS). Can. J. Cardiol., 2010, 26(9), e330-e335.
[http://dx.doi.org/10.1016/S0828-282X(10)70454-2] [PMID: 21076724]
[17]
Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; Cífková, R.; Deckers, J.W.; De Sutter, J.; Dilic, M.; Dolzhenko, M.; Erglis, A.; Fras, Z.; Gaita, D.; Gotcheva, N.; Goudevenos, J.; Heuschmann, P.; Laucevicius, A.; Lehto, S.; Lovic, D.; Miličić, D.; Moore, D.; Nicolaides, E.; Oganov, R.; Pajak, A.; Pogosova, N.; Reiner, Z.; Stagmo, M.; Störk, S.; Tokgözoğlu, L.; Vulic, D. EUROASPIRE Investigators.. EUROASPIRE IV: A European society of cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol., 2016, 23(6), 636-648.
[http://dx.doi.org/10.1177/2047487315569401] [PMID: 25687109]
[18]
Hajhosseiny, R.; Sabir, I.; Khavandi, K.; Wierzbicki, A.S. The ebbs and flows in the development of cholesterol lowering drugs: prospects for the future. Clin. Pharmacol. Ther., 2014, 96(1), 64-73.
[http://dx.doi.org/10.1038/clpt.2014.76] [PMID: 24699033]
[19]
Preiss, D.; Sattar, N. Statins and the risk of new-onset diabetes: a review of recent evidence. Curr. Opin. Lipidol., 2011, 22(6), 460-466.
[http://dx.doi.org/10.1097/MOL.0b013e32834b4994] [PMID: 21897230]
[20]
Preiss, D.; Baigent, C. Cardiovascular disease: PCSK9 inhibition: a new player in cholesterol-lowering therapies? Nat. Rev. Nephrol., 2017, 13(8), 450-451.
[http://dx.doi.org/10.1038/nrneph.2017.94] [PMID: 28669994]
[21]
Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; Bruckert, E.; De Backer, G.; Krauss, R.M.; Laufs, U.; Santos, R.D.; Hegele, R.A.; Hovingh, G.K.; Leiter, L.A.; Mach, F.; März, W.; Newman, C.B.; Wiklund, O.; Jacobson, T.A.; Catapano, A.L.; Chapman, M.J.; Ginsberg, H.N. European Atherosclerosis Society Consensus Panel.. Statin-associated muscle symptoms: impact on statin therapy- European atherosclerosis society consensus panel statement on assessment, aetiology and management. Eur. Heart J., 2015, 36(17), 1012-1022.
[http://dx.doi.org/10.1093/eurheartj/ehv043] [PMID: 25694464]
[22]
Sampson, U.K.; Fazio, S.; Linton, M.F. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr. Atheroscler. Rep., 2012, 14(1), 1-10.
[http://dx.doi.org/10.1007/s11883-011-0219-7] [PMID: 22102062]
[23]
Cannon, C.P. IMPROVE-IT trial: a comparison of ezetimibe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes after acute coronary syndromes. Circulation, 2014, 130(23), 2109.
[24]
Bohula, E.A.; Morrow, D.A.; Giugliano, R.P.; Blazing, M.A.; He, P.; Park, J.G.; Murphy, S.A.; White, J.A.; Kesaniemi, Y.A.; Pedersen, T.R.; Brady, A.J.; Mitchel, Y.; Cannon, C.P.; Braunwald, E. Atherothrombotic risk stratification and ezetimibe for secondary prevention. J. Am. Coll. Cardiol., 2017, 69(8), 911-921.
[http://dx.doi.org/10.1016/j.jacc.2016.11.070] [PMID: 28231942]
[25]
Rader, D.J.; Kastelein, J.J. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation, 2014, 129(9), 1022-1032.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001292] [PMID: 24589695]
[26]
US Food and Drug Administration, 2015.Available at:, www.fda.gov/ NewsEvents/ Newsroom/ PressAnnouncements/ ucm460082.htm
[27]
US Food and Drug Administration. FDA approves Praluent to treat certain patients with high cholesterol: first in a new class of injectable cholesterol-lowering drugs. Press Release , 2015.Available at:. www.fda.gov/NewsEvents/Newsroom/Press Announcements/ucm455883.htm
[28]
Seidah, N.G.; Benjannet, S.; Wickham, L.; Marcinkiewicz, J.; Jasmin, S.B.; Stifani, S.; Basak, A.; Prat, A.; Chrétien, M. The secretory proprotein convertase neural apoptosis regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 928-933.
[http://dx.doi.org/10.1073/pnas.0335507100] [PMID: 12552133]
[29]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[30]
Seidah, N.G.; Prat, A. Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem., 2002, 38, 79-94.
[http://dx.doi.org/10.1042/bse0380079] [PMID: 12463163]
[31]
Benjannet, S.; Rhainds, D.; Essalmani, R.; Mayne, J.; Wickham, L.; Jin, W.; Asselin, M-C.; Hamelin, J.; Varret, M.; Allard, D.; Trillard, M.; Abifadel, M.; Tebon, A.; Attie, A.D.; Rader, D.J.; Boileau, C.; Brissette, L.; Chrétien, M.; Prat, A.; Seidah, N.G. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem., 2004, 279(47), 48865-48875.
[http://dx.doi.org/10.1074/jbc.M409699200] [PMID: 15358785]
[32]
Cunningham, D.; Danley, D.E.; Geoghegan, K.F.; Griffor, M.C.; Hawkins, J.L.; Subashi, T.A.; Varghese, A.H.; Ammirati, M.J.; Culp, J.S.; Hoth, L.R.; Mansour, M.N.; McGrath, K.M.; Seddon, A.P.; Shenolikar, S.; Stutzman-Engwall, K.J.; Warren, L.C.; Xia, D.; Qiu, X. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol., 2007, 14(5), 413-419.
[http://dx.doi.org/10.1038/nsmb1235] [PMID: 17435765]
[33]
Du, F.; Hui, Y.; Zhang, M.; Linton, M.F.; Fazio, S.; Fan, D. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J. Biol. Chem., 2011, 286(50), 43054-43061.
[http://dx.doi.org/10.1074/jbc.M111.273474] [PMID: 22027821]
[34]
Bottomley, M.J.; Cirillo, A.; Orsatti, L.; Ruggeri, L.; Fisher, T.S.; Santoro, J.C.; Cummings, R.T.; Cubbon, R.M.; Lo Surdo, P.; Calzetta, A.; Noto, A.; Baysarowich, J.; Mattu, M.; Talamo, F.; De Francesco, R.; Sparrow, C.P.; Sitlani, A.; Carfí, A. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J. Biol. Chem., 2009, 284(2), 1313-1323.
[http://dx.doi.org/10.1074/jbc.M808363200] [PMID: 19001363]
[35]
Chen, Y.; Wang, H.; Yu, L.; Yu, X.; Qian, Y.W.; Cao, G.; Wang, J. Role of ubiquitination in PCSK9-mediated low-density lipoprotein receptor degradation. Biochem. Biophys. Res. Commun., 2011, 415(3), 515-518.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.110] [PMID: 22074827]
[36]
Zhang, D-W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[37]
Park, S.W.; Moon, Y.A.; Horton, J.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem., 2004, 279(48), 50630-50638.
[http://dx.doi.org/10.1074/jbc.M410077200] [PMID: 15385538]
[38]
Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498.
[http://dx.doi.org/10.1194/jlr.M700071-JLR200] [PMID: 17449864]
[39]
Saavedra, Y.G.L.; Day, R.; Seidah, N.G. The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J. Biol. Chem., 2012, 287(52), 43492-43501.
[http://dx.doi.org/10.1074/jbc.M112.394023] [PMID: 23105118]
[40]
Maxwell, K.N.; Breslow, J.L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. USA, 2004, 101(18), 7100-7105.
[http://dx.doi.org/10.1073/pnas.0402133101] [PMID: 15118091]
[41]
Maxwell, K.N.; Fisher, E.A.; Breslow, J.L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 2069-2074.
[http://dx.doi.org/10.1073/pnas.0409736102] [PMID: 15677715]
[42]
Tavori, H.; Fan, D.; Blakemore, J.L.; Yancey, P.G.; Ding, L.; Linton, M.F.; Fazio, S. Serum proprotein convertase subtilisin/ kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation, 2013, 127(24), 2403-2413.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001592] [PMID: 23690465]
[43]
Abifadel, M.; Elbitar, S.; El Khoury, P.; Ghaleb, Y.; Chémaly, M.; Moussalli, M.L.; Rabès, J.P.; Varret, M.; Boileau, C. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr. Atheroscler. Rep., 2014, 16(9), 439.
[http://dx.doi.org/10.1007/s11883-014-0439-8] [PMID: 25052769]
[44]
Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1454-1459.
[http://dx.doi.org/10.1161/01.ATV.0000134621.14315.43] [PMID: 15178557]
[45]
Horton, J.D.; Shah, N.A.; Warrington, J.A.; Anderson, N.N.; Park, S.W.; Brown, M.S.; Goldstein, J.L. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12027-12032.
[http://dx.doi.org/10.1073/pnas.1534923100] [PMID: 14512514]
[46]
Maxwell, K.N.; Soccio, R.E.; Duncan, E.M.; Sehayek, E.; Breslow, J.L. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J. Lipid Res., 2003, 44(11), 2109-2119.
[http://dx.doi.org/10.1194/jlr.M300203-JLR200] [PMID: 12897189]
[47]
Mohammadi, A.; Shabani, M.; Naseri, F.; Hosseni, B.; Soltanmohammadi, E.; Piran, S.; Najafi, M. Circulating PCSK9 Over SREBP-2 expression affects serum ldl and cholesterol levels. Adv. Clin. Exp. Med., 2017.
[http://dx.doi.org/10.17219/acem/62836] [PMID: 28691419 ]
[48]
Dong, B.; Wu, M.; Li, H.; Kraemer, F.B.; Adeli, K.; Seidah, N.G.; Park, S.W.; Liu, J. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J. Lipid Res., 2010, 51(6), 1486-1495.
[http://dx.doi.org/10.1194/jlr.M003566] [PMID: 20048381]
[49]
Shende, V.R.; Wu, M.; Singh, A.B.; Dong, B.; Kan, C.F.K.; Liu, J. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1α in normolipidemic mice. J. Lipid Res., 2015, 56(4), 801-809.
[http://dx.doi.org/10.1194/jlr.M052969] [PMID: 25652089]
[50]
Berthold, H.K.; Seidah, N.G.; Benjannet, S.; Gouni-Berthold, I. Evidence from a randomized trial that simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. PLoS One, 2013, 8(3)e60095
[http://dx.doi.org/10.1371/journal.pone.0060095] [PMID: 23544125]
[51]
Awan, Z.; Seidah, N.G.; MacFadyen, J.G.; Benjannet, S.; Chasman, D.I.; Ridker, P.M.; Genest, J. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem., 2012, 58(1), 183-189.
[http://dx.doi.org/10.1373/clinchem.2011.172932] [PMID: 22065156]
[52]
Grefhorst, A.; McNutt, M.C.; Lagace, T.A.; Horton, J.D. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J. Lipid Res., 2008, 49(6), 1303-1311.
[http://dx.doi.org/10.1194/jlr.M800027-JLR200] [PMID: 18354138]
[53]
Liu, M.; Wu, G.; Baysarowich, J.; Kavana, M.; Addona, G.H.; Bierilo, K.K.; Mudgett, J.S.; Pavlovic, G.; Sitlani, A.; Renger, J.J.; Hubbard, B.K.; Fisher, T.S.; Zerbinatti, C.V. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J. Lipid Res., 2010, 51(9), 2611-2618.
[http://dx.doi.org/10.1194/jlr.M006635] [PMID: 20453200]
[54]
Schmidt, R.J.; Beyer, T.P.; Bensch, W.R.; Qian, Y.W.; Lin, A.; Kowala, M.; Alborn, W.E.; Konrad, R.J.; Cao, G. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem. Biophys. Res. Commun., 2008, 370(4), 634-640.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.004] [PMID: 18406350]
[55]
Persson, L.; Cao, G.; Ståhle, L.; Sjöberg, B.G.; Troutt, J.S.; Konrad, R.J.; Gälman, C.; Wallén, H.; Eriksson, M.; Hafström, I.; Lind, S.; Dahlin, M.; Amark, P.; Angelin, B.; Rudling, M. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2666-2672.
[http://dx.doi.org/10.1161/ATVBAHA.110.214130] [PMID: 20884874]
[56]
Cui, Q.; Ju, X.; Yang, T.; Zhang, M.; Tang, W.; Chen, Q.; Hu, Y.; Haas, J.V.; Troutt, J.S.; Pickard, R.T.; Darling, R.; Konrad, R.J.; Zhou, H.; Cao, G. Serum PCSK9 is associated with multiple metabolic factors in a large Han Chinese population. Atherosclerosis, 2010, 213(2), 632-636.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.09.027] [PMID: 21040917]
[57]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[58]
Gustafsen, C.; Kjolby, M.; Nyegaard, M.; Mattheisen, M.; Lundhede, J.; Buttenschøn, H.; Mors, O.; Bentzon, J.F.; Madsen, P.; Nykjaer, A.; Glerup, S. The hypercholesterolemia- risk gene SORT1 facilitates PCSK9 secretion. Cell Metab., 2014, 19(2), 310-318.
[http://dx.doi.org/10.1016/j.cmet.2013.12.006] [PMID: 24506872]
[59]
Kjolby, M.; Nielsen, M.S.; Petersen, C.M. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease. Curr. Atheroscler. Rep., 2015, 17(4), 496.
[http://dx.doi.org/10.1007/s11883-015-0496-7] [PMID: 25702058]
[60]
Buttenschøn, H.N.; Demontis, D.; Kaas, M.; Elfving, B.; Mølgaard, S.; Gustafsen, C.; Kaerlev, L.; Petersen, C.M.; Børglum, A.D.; Mors, O.; Glerup, S. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl. Psychiatry, 2015, 5(11) e677
[http://dx.doi.org/10.1038/tp.2015.167] [PMID: 26556286]
[61]
Leren, T.P. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin. Genet., 2004, 65(5), 419-422.
[http://dx.doi.org/10.1111/j.0009-9163.2004.0238.x] [PMID: 15099351]
[62]
Naoumova, R.P.; Tosi, I.; Patel, D.; Neuwirth, C.; Horswell, S.D.; Marais, A.D.; van Heyningen, C.; Soutar, A.K. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol., 2005, 25(12), 2654-2660.
[http://dx.doi.org/10.1161/01.ATV.0000190668.94752.ab] [PMID: 16224054]
[63]
Timms, K.M.; Wagner, S.; Samuels, M.E.; Forbey, K.; Goldfine, H.; Jammulapati, S.; Skolnick, M.H.; Hopkins, P.N.; Hunt, S.C.; Shattuck, D.M. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet., 2004, 114(4), 349-353.
[http://dx.doi.org/10.1007/s00439-003-1071-9] [PMID: 14727179]
[64]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[65]
Al-Mashhadi, R. H.; Sørensen, C. B.; Kragh, P. M.; Christoffersen, C.; Mortensen, M. B.; Tolbod, L. P.; Thim, T.; Du, Y.; Li, J.; Liu, Y. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med, 2013 , 5(166), 166ra1.
[http://dx.doi.org/10.1126/scitranslmed.3004853] [PMID: 23283366]
[66]
Rashid, S.; Curtis, D.E.; Garuti, R.; Anderson, N.N.; Bashmakov, Y.; Ho, Y.K.; Hammer, R.E.; Moon, Y.A.; Horton, J.D. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5374-5379.
[http://dx.doi.org/10.1073/pnas.0501652102] [PMID: 15805190]
[67]
Kent, S.T.; Rosenson, R.S.; Avery, C.L.; Chen, Y.D.I.; Correa, A.; Cummings, S.R.; Cupples, L.A.; Cushman, M.; Evans, D.S.; Gudnason, V. PCSK9 Loss-of-Function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and Stroke : data from 9 studies of blacks and whites. Circ. Cardiovasc. Genet., 2017, 10(4), e001632.
[http://dx.doi.org/10.1161/CIRCGENETICS.116.001632] [PMID: 28768753]
[68]
Cohen, J.; Pertsemlidis, A.; Kotowski, I.K.; Graham, R.; Garcia, C.K.; Hobbs, H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet., 2005, 37(2), 161-165.
[http://dx.doi.org/10.1038/ng1509] [PMID: 15654334]
[69]
Zhao, Z.; Tuakli-Wosornu, Y.; Lagace, T.A.; Kinch, L.; Grishin, N.V.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet., 2006, 79(3), 514-523.
[http://dx.doi.org/10.1086/507488] [PMID: 16909389]
[70]
Alghamdi, R.H.; O’Reilly, P.; Lu, C.; Gomes, J.; Lagace, T.A.; Basak, A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153-421): design, synthesis and biochemical evaluation. Eur. J. Med. Chem., 2015, 92, 890-907.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.022] [PMID: 25679794]
[71]
McNutt, M.C.; Lagace, T.A.; Horton, J.D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem., 2007, 282(29), 20799-20803.
[http://dx.doi.org/10.1074/jbc.C700095200] [PMID: 17537735]
[72]
Palmer-Smith, H.; Basak, A. Regulatory effects of peptides from the pro and catalytic domains of proprotein convertase subtilisin/kexin 9 (PCSK9) on low-density lipoprotein receptor (LDL-R). Curr. Med. Chem., 2010, 17(20), 2168-2182.
[http://dx.doi.org/10.2174/092986710791299948] [PMID: 20423303]
[73]
Mitchell, T.; Chao, G.; Sitkoff, D.; Lo, F.; Monshizadegan, H.; Meyers, D.; Low, S.; Russo, K.; DiBella, R.; Denhez, F.; Gao, M.; Myers, J.; Duke, G.; Witmer, M.; Miao, B.; Ho, S.P.; Khan, J.; Parker, R.A. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther., 2014, 350(2), 412-424.
[http://dx.doi.org/10.1124/jpet.114.214221] [PMID: 24917546]
[74]
Cameron, J.; Ranheim, T.; Kulseth, M.A.; Leren, T.P.; Berge, K.E. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis, 2008, 201(2), 266-273.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.02.004] [PMID: 18355829]
[75]
Dong, B.; Li, H.; Singh, A.B.; Cao, A.; Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin proteasome degradation pathway. J. Biol. Chem., 2015, 290(7), 4047-4058.
[http://dx.doi.org/10.1074/jbc.M114.597229] [PMID: 25540198]
[76]
Graham, M.J.; Lemonidis, K.M.; Whipple, C.P.; Subramaniam, A.; Monia, B.P.; Crooke, S.T.; Crooke, R.M. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res., 2007, 48(4), 763-767.
[http://dx.doi.org/10.1194/jlr.C600025-JLR200] [PMID: 17242417]
[77]
Sehgal, A.; Vaishnaw, A.; Fitzgerald, K. Liver as a target for oligonucleotide therapeutics. J. Hepatol., 2013, 59(6), 1354-1359.
[http://dx.doi.org/10.1016/j.jhep.2013.05.045] [PMID: 23770039]
[78]
Wang, X.; Raghavan, A.; Chen, T.; Qiao, L.; Zhang, Y.; Ding, Q.; Musunuru, K. CRISPR-Cas9 Targeting of pcsk9 in human hepatocytes in vivo-brief report. Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 783-786.
[http://dx.doi.org/10.1161/ATVBAHA.116.307227] [PMID: 26941020]
[79]
Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68.
[http://dx.doi.org/10.1016/S0140-6736(13)61914-5] [PMID: 24094767]
[80]
van Poelgeest, E.P.; Hodges, M.R.; Moerland, M.; Tessier, Y.; Levin, A.A.; Persson, R.; Lindholm, M.W.; Dumong Erichsen, K.; Ørum, H.; Cohen, A.F.; Burggraaf, J. Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial. Br. J. Clin. Pharmacol., 2015, 80(6), 1350-1361.
[http://dx.doi.org/10.1111/bcp.12738] [PMID: 26261033]
[81]
Fitzgerald, K.; Simon, A.; White, S.; Borodovsky, A.; Patel, N.; Bettencourt, B.; Clausen, V.; Horton, J. D.; Wijngaard, P.; Kauffman, R. ALN-PCSsc, an RNAi investigational agent that inhibits PCSK9 with potential for effective quarterly or possibly bi-annual dosing: results of a single-blind, placebo-controlled, Phase I single-ascending dose (SAD) and multi-dose (MD) trial in adults with elevated LDL-C, on and off statins. Latebreaking Clinical Trials, 2015, 4
[82]
Kastelein, J.J.; Nissen, S.E.; Rader, D.J.; Hovingh, G.K.; Wang, M.D.; Shen, T.; Krueger, K.A. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled Phase 2 study. Eur. Heart J., 2016, 37(17), 1360-1369.
[http://dx.doi.org/10.1093/eurheartj/ehv707] [PMID: 26757788]
[83]
Foltz, I.N.; Karow, M.; Wasserman, S.M. Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. Circulation, 2013, 127(22), 2222-2230.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002033] [PMID: 23733968]
[84]
Catapano, A.L.; Papadopoulos, N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis, 2013, 228(1), 18-28.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.044] [PMID: 23466067]
[85]
Lunven, C.; Paehler, T.; Poitiers, F.; Brunet, A.; Rey, J.; Hanotin, C.; Sasiela, W.J. A randomized study of the relative pharmacokinetics, pharmacodynamics, and safety of alirocumab, a fully human monoclonal antibody to PCSK9, after single subcutaneous administration at three different injection sites in healthy subjects. Cardiovasc. Ther., 2014, 32(6), 297-301.
[http://dx.doi.org/10.1111/1755-5922.12093] [PMID: 25256660]
[86]
Roth, E.M.; Diller, P. Alirocumab for hyperlipidemia: physiology of PCSK9 inhibition, pharmacodynamics and Phase I and II clinical trial results of a PCSK9 monoclonal antibody. Future Cardiol., 2014, 10(2), 183-199.
[http://dx.doi.org/10.2217/fca.13.107] [PMID: 24762246]
[87]
Emery, M.; Gibbs, J.; Slatter, J.; Hamilton, L.; Wasserman, S.; Geller, M.; Dias, C. Evolocumab pharmacokinetics and its effects on LDL-C and PCSK9 lowering in subjects with mild or moderate hepatic impairment. Clin. Pharmacol. Ther., 2015, 97, S69.
[88]
Gibbs, J.P.; Doshi, S.; Kuchimanchi, M.; Grover, A.; Emery, M.G.; Dodds, M.G.; Gibbs, M.A.; Somaratne, R.; Wasserman, S.M.; Blom, D. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Clin. Pharmacol., 2017, 57(5), 616-626.
[http://dx.doi.org/10.1002/jcph.840] [PMID: 27861991]
[89]
Pfizer Inc. Discontinues Global Development of Bococizumab, Its Investigational PCSK9 Inhibitor, 2016.Available at:, http://www.pfizer.com/news/pressrelease/press-releasedetail/pfizer_discontinues_global_development_of_bococizumab_its_investigational_pcsk9_in
[90]
Carthew, R.W.; Sontheimer, E.J. origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[91]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[92]
Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11915-11920.
[http://dx.doi.org/10.1073/pnas.0805434105] [PMID: 18695239]
[93]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[94]
Landlinger, C.; Pouwer, M.G.; Juno, C.; van der Hoorn, J.W.A.; Pieterman, E.J.; Jukema, J.W.; Staffler, G.; Princen, H.M.G.; Galabova, G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur. Heart J., 2017, 38(32), 2499-2507.
[http://dx.doi.org/10.1093/eurheartj/ehx260] [PMID: 28637178]
[95]
Dias, C.S.; Shaywitz, A.J.; Wasserman, S.M.; Smith, B.P.; Gao, B.; Stolman, D.S.; Crispino, C.P.; Smirnakis, K.V.; Emery, M.G.; Colbert, A.; Gibbs, J.P.; Retter, M.W.; Cooke, B.P.; Uy, S.T.; Matson, M.; Stein, E.A. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol., 2012, 60(19), 1888-1898.
[http://dx.doi.org/10.1016/j.jacc.2012.08.986] [PMID: 23083772]
[96]
Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118.
[http://dx.doi.org/10.1056/NEJMoa1105803] [PMID: 22435370]
[97]
Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA, 2012, 308(23), 2497-2506.
[http://dx.doi.org/10.1001/jama.2012.25790] [PMID: 23128163]
[98]
Giugliano, R.P.; Desai, N.R.; Kohli, P.; Rogers, W.J.; Somaratne, R.; Huang, F.; Liu, T.; Mohanavelu, S.; Hoffman, E.B.; McDonald, S.T.; Abrahamsen, T.E.; Wasserman, S.M.; Scott, R.; Sabatine, M.S. LAPLACE-TIMI 57 Investigators. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo controlled, dose-ranging, phase 2 study. Lancet, 2012, 380(9858), 2007-2017.
[http://dx.doi.org/10.1016/S0140-6736(12)61770-X] [PMID: 23141813]
[99]
Koren, M.J.; Scott, R.; Kim, J.B.; Knusel, B.; Liu, T.; Lei, L.; Bolognese, M.; Wasserman, S.M. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double blind, placebo-controlled, phase 2 study. Lancet, 2012, 380(9858), 1995-2006.
[http://dx.doi.org/10.1016/S0140-6736(12)61771-1] [PMID: 23141812]
[100]
Raal, F.; Scott, R.; Somaratne, R.; Bridges, I.; Li, G.; Wasserman, S.M.; Stein, E.A. Low-density lipoprotein cholesterol- lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation, 2012, 126(20), 2408-2417.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.144055] [PMID: 23129602]
[101]
Hirayama, A.; Honarpour, N.; Yoshida, M.; Yamashita, S.; Huang, F.; Wasserman, S.M.; Teramoto, T. Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk-primary results from the phase 2 YUKAWA study. Circ. J., 2014, 78(5), 1073-1082.
[http://dx.doi.org/10.1253/circj.CJ-14-0130] [PMID: 24662398]
[102]
Stein, E.A.; Giugliano, R.P.; Koren, M.J.; Raal, F.J.; Roth, E.M.; Weiss, R.; Sullivan, D.; Wasserman, S.M.; Somaratne, R.; Kim, J.B.; Yang, J.; Liu, T.; Albizem, M.; Scott, R.; Sabatine, M.S. PROFICIO Investigators.. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur. Heart J., 2014, 35(33), 2249-2259.
[http://dx.doi.org/10.1093/eurheartj/ehu085] [PMID: 24598985]
[103]
Koren, M.J.; Giugliano, R.P.; Raal, F.J.; Sullivan, D.; Bolognese, M.; Langslet, G.; Civeira, F.; Somaratne, R.; Nelson, P.; Liu, T.; Scott, R.; Wasserman, S.M.; Sabatine, M.S. OSLER Investigators. Efficacy and safety of longerterm administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the openlabel study of long-term evaluation against LDL-C (OSLER) randomized trial Circulation, 2013, 129(2), 234-243.
[http://dx.doi.org/10.1161/circulationaha.113.007012v] [PMID: 24255061]
[104]
Raal, F.; Honarpour, N.; Blom, D.; Hovingh, G.; Xu, F.; Scott, R.; Wasserman, S.; Stein, E. Trial evaluating evolocumab, a PCSK9 antibody, in patients with homozygous FH (TESLA): Results of the randomized, double-blind, placebo-controlled trial. Atherosclerosis, 2014, 235(2), e12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.004]
[105]
Kiyosue, A.; Honarpour, N.; Kurtz, C.; Xue, A.; Wasserman, S.M.; Hirayama, A. A phase 3 study of evolocumab (AMG 145) in statin-treated Japanese patients at high cardiovascular risk. Am. J. Cardiol., 2016, 117(1), 40-47.
[http://dx.doi.org/10.1016/j.amjcard.2015.10.021] [PMID: 26547291]
[106]
Robinson, J.G.; Nedergaard, B.S.; Rogers, W.J.; Fialkow, J.; Neutel, J.M.; Ramstad, D.; Somaratne, R.; Legg, J.C.; Nelson, P.; Scott, R.; Wasserman, S.M.; Weiss, R. LAPLACE-2 Investigators.. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA, 2014, 311(18), 1870-1882.
[http://dx.doi.org/10.1001/jama.2014.4030] [PMID: 24825642]
[107]
Koren, M.J.; Lundqvist, P.; Bolognese, M.; Neutel, J.M.; Monsalvo, M.L.; Yang, J.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Bays, H. MENDEL-2 Investigators.. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2531-2540.
[http://dx.doi.org/10.1016/j.jacc.2014.03.018] [PMID: 24691094]
[108]
Blom, D.J.; Hala, T.; Bolognese, M.; Lillestol, M.J.; Toth, P.D.; Burgess, L.; Ceska, R.; Roth, E.; Koren, M.J.; Ballantyne, C.M.; Monsalvo, M.L.; Tsirtsonis, K.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Stein, E.A. DESCARTES Investigators.. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl. J. Med., 2014, 370(19), 1809-1819.
[http://dx.doi.org/10.1056/NEJMoa1316222] [PMID: 24678979]
[109]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. GAUSS-2 Investigators.. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[110]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. FOURIER Steering Committee and Investigators.. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[111]
Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A.; Investigators, T. TESLA Investigators.. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo controlled trial. Lancet, 2015, 385(9965), 341-350.
[http://dx.doi.org/10.1016/S0140-6736(14)61374-X] [PMID: 25282520]
[112]
Raal, F.J.; Hovingh, G.K.; Blom, D.; Santos, R.D.; Harada-Shiba, M.; Bruckert, E.; Couture, P.; Soran, H.; Watts, G.F.; Kurtz, C.; Honarpour, N.; Tang, L.; Kasichayanula, S.; Wasserman, S.M.; Stein, E.A. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open label TAUSSIG study. Lancet Diabetes Endocrinol., 2017, 5(4), 280-290.
[http://dx.doi.org/10.1016/S2213-8587(17)30044-X] [PMID: 28215937]
[113]
Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D.; Hovingh, G.K.; Cariou, B.; Gouni-Berthold, I.; Somaratne, R.; Bridges, I.; Scott, R.; Wasserman, S.M.; Gaudet, D. RUTHERFORD-2 Investigators.. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 331-340.
[http://dx.doi.org/10.1016/S0140-6736(14)61399-4] [PMID: 25282519]
[114]
Stein, E.A.; Koren, M.; Honarpour, N.; Kurtz, C.; Yang, J.; Wasserman, S.; Raal, F. Clinical equivalence of evolocumab 140 mg every two weeks and 420 mg monthly dosing regimens: a pooled analysis of 3146 patients in phase 3 studies. J. Am. Coll. Cardiol., 2015, 65(10), A1368.
[http://dx.doi.org/10.1016/S0735-1097(15)61368-7]
[115]
Roth, E.M.; McKenney, J.M.; Hanotin, C.; Asset, G.; Stein, E.A. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med., 2012, 367(20), 1891-1900.
[http://dx.doi.org/10.1056/NEJMoa1201832] [PMID: 23113833]
[116]
McKenney, J.M.; Koren, M.J.; Kereiakes, D.J.; Hanotin, C.; Ferrand, A-C.; Stein, E.A. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol., 2012, 59(25), 2344-2353.
[http://dx.doi.org/10.1016/j.jacc.2012.03.007] [PMID: 22463922]
[117]
Stein, E.A.; Gipe, D.; Bergeron, J.; Gaudet, D.; Weiss, R.; Dufour, R.; Wu, R.; Pordy, R. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet, 2012, 380(9836), 29-36.
[http://dx.doi.org/10.1016/S0140-6736(12)60771-5] [PMID: 22633824]
[118]
Roth, E.M.; Taskinen, M.R.; Ginsberg, H.; Kastelein, J.; Colhoun, H.M.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. A 24-week study of alirocumab as monotherapy versus ezetimibe: the first Phase 3 data of a proprotein convertase subtilisin/kexin type 9 inhibitor. J. Am. Coll. Cardiol., 2014, 63(12), A1370.
[http://dx.doi.org/10.1016/S0735-1097(14)61370-X]
[119]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. ODYSSEY ALTERNATIVE Investigators.. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[120]
Stroes, E.; Guyton, J.R.; Lepor, N.; Civeira, F.; Gaudet, D.; Watts, G.F.; Baccara-Dinet, M.T.; Lecorps, G.; Manvelian, G.; Farnier, M. ODYSSEY CHOICE II Investigators. Efficacy and safety of alirocumab 150 mg every 4 weeks in patients with hypercholesterolemia not on statin therapy: the ODYSSEY CHOICE II study. J. Am. Heart Assoc., 2016, 5(9), e003421.
[http://dx.doi.org/10.1161/JAHA.116.003421] [PMID: 27625344]
[121]
Colhoun, H.M.; Robinson, J.G.; Farnier, M.; Cariou, B.; Blom, D.; Kereiakes, D.J.; Lorenzato, C.; Pordy, R.; Chaudhari, U. Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc. Disord., 2014, 14(1), 121.
[http://dx.doi.org/10.1186/1471-2261-14-121] [PMID: 25240705]
[122]
Bays, H.; Gaudet, D.; Weiss, R.; Ruiz, J.L.; Watts, G.F.; Gouni-Berthold, I.; Robinson, J.; Zhao, J.; Hanotin, C.; Donahue, S. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS I randomized trial. J. Clin. Endocrinol. Metab., 2015, 100(8), 3140-3148.
[http://dx.doi.org/10.1210/jc.2015-1520] [PMID: 26030325]
[123]
Farnier, M.; Jones, P.; Severance, R.; Averna, M.; Steinhagen-Thiessen, E.; Colhoun, H.M.; Du, Y.; Hanotin, C.; Donahue, S. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: The ODYSSEY OPTIONS II randomized trial. Atherosclerosis, 2016, 244, 138-146.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.010] [PMID: 26638010]
[124]
Teramoto, T.; Kobayashi, M.; Tasaki, H.; Yagyu, H.; Higashikata, T.; Takagi, Y.; Uno, K.; Baccara-Dinet, M.T.; Nohara, A. efficacy and safety of alirocumab in Japanese patients with heterozygous familial hypercholesterolemia or at high cardiovascular risk with hypercholesterolemia not adequately controlled with statins - ODYSSEY JAPAN randomized controlled trial. Circ. J., 2016, 80(9), 1980-1987.
[http://dx.doi.org/10.1253/circj.CJ-16-0387] [PMID: 27452202]
[125]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J. ODYSSEY LONG TERM Investigators.. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[126]
Roth, E.M.; Moriarty, P.M.; Bergeron, J.; Langslet, G.; Manvelian, G.; Zhao, J.; Baccara-Dinet, M.T.; Rader, D.J. ODYSSEY CHOICE I investigators.. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis, 2016, 254, 254-262.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.043] [PMID: 27639753]
[127]
Kastelein, J.J.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), 2996-3003.
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[128]
Ginsberg, H.N.; Rader, D.J.; Raal, F.J.; Guyton, J.R.; Lorenzato, C.; Pordy, R.; Baccara-Dinet, M.T.; Stroes, E. ODYSSEY HIGH FH: efficacy and safety of alirocumab in patients with severe heterozygous familial hypercholesterolemia. Circulation, 2014, 130(23), 2119.
[129]
Moriarty, P.M.; Parhofer, K.G.; Babirak, S.P.; Cornier, M.A.; Duell, P.B.; Hohenstein, B.; Leebmann, J.; Ramlow, W.; Schettler, V.; Simha, V.; Steinhagen-Thiessen, E.; Thompson, P.D.; Vogt, A.; von Stritzky, B.; Du, Y.; Manvelian, G. Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur. Heart J., 2016, 37(48), 3588-3595.
[http://dx.doi.org/10.1093/eurheartj/ehw388] [PMID: 27572070]
[130]
Roth, E.M.; Taskinen, M-R.; Ginsberg, H.N.; Kastelein, J.J.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.049] [PMID: 25037695]
[131]
Cannon, C.P.; Cariou, B.; Blom, D.; McKenney, J.M.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Colhoun, H.M. ODYSSEY COMBO II Investigators.. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur. Heart J., 2015, 36(19), 1186-1194.
[http://dx.doi.org/10.1093/eurheartj/ehv028] [PMID: 25687353]
[132]
Kereiakes, D.J.; Robinson, J.G.; Cannon, C.P.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Colhoun, H.M. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am. Heart J., 2015, 169(6), 906-915. e13.
[http://dx.doi.org/10.1016/j.ahj.2015.03.004] [PMID: 26027630]
[133]
Müller-Wieland, D.; Leiter, L.A.; Cariou, B.; Letierce, A.; Colhoun, H.M.; Del Prato, S.; Henry, R.R.; Tinahones, F.J.; Aurand, L.; Maroni, J.; Ray, K.K.; Bujas-Bobanovic, M. Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidaemia at high cardiovascular risk. Cardiovasc. Diabetol., 2017, 16(1), 70.
[http://dx.doi.org/10.1186/s12933-017-0552-4] [PMID: 28545518]
[134]
Leiter, L.A.; Cariou, B.; Müller-Wieland, D.; Colhoun, H.M.; Del Prato, S.; Tinahones, F.J.; Ray, K.K.; Bujas- Bobanovic, M.; Domenger, C.; Mandel, J.; Samuel, R.; Henry, R.R. Efficacy and safety of alirocumab in insulintreated individuals with type 1 or type 2 diabetes and high cardiovascular risk: The ODYSSEY DM-INSULIN randomized trial. Diabetes Obes. Metab., 2017, 19(12), 1781- 1792.
[http://dx.doi.org/10.1111/dom.13114] [PMID: 28905478]
[135]
Roth, E.M.; McKenney, J.M. ODYSSEY MONO: effect of alirocumab 75 mg subcutaneously every 2 weeks as monotherapy versus ezetimibe over 24 weeks. Future Cardiol., 2015, 11(1), 27-37.
[http://dx.doi.org/10.2217/fca.14.82] [PMID: 25606700]
[136]
van der Tuin, S.J.; Kühnast, S.; Berbée, J.F.; Verschuren, L.; Pieterman, E.J.; Havekes, L.M.; van der Hoorn, J.W.; Rensen, P.C.; Jukema, J.W.; Princen, H.M.; Willems van Dijk, K.; Wang, Y. Anacetrapib reduces (V)LDL cholesterol by inhibition of CETP activity and reduction of plasma PCSK9. J. Lipid Res., 2015, 56(11), 2085-2093.
[http://dx.doi.org/10.1194/jlr.M057794] [PMID: 26342106]
[137]
Miyosawa, K.; Watanabe, Y.; Murakami, K.; Murakami, T.; Shibata, H.; Iwashita, M.; Yamazaki, H.; Yamazaki, K.; Ohgiya, T.; Shibuya, K.; Mizuno, K.; Tanabe, S.; Singh, S.A.; Aikawa, M. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am. J. Physiol. Endocrinol. Metab., 2015, 309(2), E177-E190.
[http://dx.doi.org/10.1152/ajpendo.00528.2014] [PMID: 26015437]
[138]
Gaudet, D.; Kereiakes, D.J.; McKenney, J.M.; Roth, E.M.; Hanotin, C.; Gipe, D.; Du, Y.; Ferrand, A-C.; Ginsberg, H.N.; Stein, E.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol., 2014, 114(5), 711-715.
[http://dx.doi.org/10.1016/j.amjcard.2014.05.060] [PMID: 25060413]
[139]
Raal, F.J.; Giugliano, R.P.; Sabatine, M.S.; Koren, M.J.; Langslet, G.; Bays, H.; Blom, D.; Eriksson, M.; Dent, R.; Wasserman, S.M.; Huang, F.; Xue, A.; Albizem, M.; Scott, R.; Stein, E.A. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol., 2014, 63(13), 1278-1288.
[http://dx.doi.org/10.1016/j.jacc.2014.01.006] [PMID: 24509273]
[140]
Romagnuolo, R.; Scipione, C.A.; Boffa, M.B.; Marcovina, S.M.; Seidah, N.G.; Koschinsky, M.L. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem., 2015, 290(18), 11649-11662.
[http://dx.doi.org/10.1074/jbc.M114.611988] [PMID: 25778403]
[141]
Koschinsky, M.; Gemin, M.; Scipione, C.; Boffa, M.; Seidah, N.; Romagnuolo, R. Evaluating the roles of PCSK9 and specific receptors in lipoprotein (a) catabolism. J. Clin. Lipidol., 2016, 3(10), 720-721.
[http://dx.doi.org/10.1016/j.jacl.2016.03.099]
[142]
Kurt, B.; Soufi, M.; Sattler, A.; Schaefer, J.R. Lipoprotein(a)-clinical aspects and future challenges. Clin. Res. Cardiol. Suppl., 2015, 10(1), 26-32.
[http://dx.doi.org/10.1007/s11789-015-0075-z] [PMID: 25732622]
[143]
Lambert, G.; Thedrez, A.; Croyal, M.; Ramin-Mangata, S.; Couret, D.; Diotel, N.; Nobécourt-Dupuy, E.; Krempf, M.; LeBail, J.C.; Poirier, B.; Blankenstein, J.; Villard, E.F.; Guillot, E. The complexity of lipoprotein (a) lowering by PCSK9 monoclonal antibodies. Clin. Sci. (Lond.), 2017, 131(4), 261-268.
[http://dx.doi.org/10.1042/CS20160403] [PMID: 28108631]
[144]
Walley, K.R.; Thain, K.R.; Russell, J.A.; Reilly, M.P.; Meyer, N.J.; Ferguson, J. F.; Christie, J.D.; Nakada, T.-a.; Fjell, C.D.; Thair, S.A. PCSK9 is a critical regulator of the innate immune response and septic shock outcome Sci. Transl. Med., 2014, 6(258), 258ra143.
[http://dx.doi.org/10.1126/scitranslmed.3008782] [PMID: 25320235]
[145]
Topchiy, E.; Cirstea, M.; Kong, H.J.; Boyd, J.H.; Wang, Y.; Russell, J.A.; Walley, K.R. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLoS One, 2016, 11(5)e0155030
[http://dx.doi.org/10.1371/journal.pone.0155030] [PMID: 27171436]
[146]
Tang, Z.H.; Peng, J.; Ren, Z.; Yang, J.; Li, T.T.; Li, T.H.; Wang, Z.; Wei, D.H.; Liu, L.S.; Zheng, X.L.; Jiang, Z.S. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis, 2017, 262, 113-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.04.023] [PMID: 28535426]
[147]
Giunzioni, I.; Tavori, H.; Covarrubias, R.; Major, A.S.; Ding, L.; Zhang, Y.; DeVay, R.M.; Hong, L.; Fan, D.; Predazzi, I.M.; Rashid, S.; Linton, M.F.; Fazio, S. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol., 2016, 238(1), 52-62.
[http://dx.doi.org/10.1002/path.4630] [PMID: 26333678]
[148]
Cheng, J.M.; Oemrawsingh, R.M.; Garcia-Garcia, H.M.; Boersma, E.; van Geuns, R-J.; Serruys, P.W.; Kardys, I.; Akkerhuis, K.M. PCSK9 in relation to coronary plaque inflammation: Results of the ATHEROREMO-IVUS study. Atherosclerosis, 2016, 248, 117-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.010] [PMID: 27015246]
[149]
Ridker, P.M.; Rifai, N.; Bradwin, G.; Rose, L. Plasma proprotein convertase subtilisin/kexin type 9 levels and the risk of first cardiovascular events. Eur. Heart J., 2016, 37(6), 554-560.
[http://dx.doi.org/10.1093/eurheartj/ehv568] [PMID: 26508163]
[150]
Vlachopoulos, C.; Terentes-Printzios, D.; Georgiopoulos, G.; Skoumas, I.; Koutagiar, I.; Ioakeimidis, N.; Stefanadis, C.; Tousoulis, D. Prediction of cardiovascular events with levels of proprotein convertase subtilisin/kexin type 9: a systematic review and meta-analysis. Atherosclerosis, 2016, 252, 50-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.922] [PMID: 27501130]
[151]
Chan, D.C.; Pang, J.; McQuillan, B.M.; Hung, J.; Beilby, J.P.; Barrett, P.H.R.; Watts, G.F. Plasma proprotein convertase subtilisin kexin type 9 as a predictor of carotid atherosclerosis in asymptomatic adults. Heart Lung Circ., 2016, 25(5), 520-525.
[http://dx.doi.org/10.1016/j.hlc.2015.10.017] [PMID: 26706651]
[152]
Alonso, R.; Mata, P.; Muñiz, O.; Fuentes-Jimenez, F.; Díaz, J.L.; Zambón, D.; Tomás, M.; Martin, C.; Moyon, T.; Croyal, M.; Thedrez, A.; Lambert, G. PCSK9 and lipoprotein (a) levels are two predictors of coronary artery calcification in asymptomatic patients with familial hypercholesterolemia. Atherosclerosis, 2016, 254, 249-253.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.038] [PMID: 27594539]
[153]
Xie, W.; Liu, J.; Wang, W.; Wang, M.; Qi, Y.; Zhao, F.; Sun, J.; Liu, J.; Li, Y.; Zhao, D. Association between plasma PCSK9 levels and 10-year progression of carotid atherosclerosis beyond LDL-C: a cohort study. Int. J. Cardiol., 2016, 215, 293-298.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.103] [PMID: 27128549]
[154]
Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; Raichlen, J.S.; Ballantyne, C.M.; Davignon, J.; Erbel, R.; Fruchart, J.C.; Tardif, J.C.; Schoenhagen, P.; Crowe, T.; Cain, V.; Wolski, K.; Goormastic, M.; Tuzcu, E.M. ASTEROID Investigators.. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA, 2006, 295(13), 1556-1565.
[http://dx.doi.org/10.1001/jama.295.13.jpc60002] [PMID: 16533939]
[155]
Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; Nissen, S.E. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med., 2011, 365(22), 2078-2087.
[http://dx.doi.org/10.1056/NEJMoa1110874] [PMID: 22085316]
[156]
Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA, 2016, 316(22), 2373-2384.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[157]
Navarese, E.P.; Kołodziejczak, M.; Kereiakes, D.J.; Tantry, U.S.; O’connor, C.; Gurbel, P.A. Proprotein convertase subtilisin/kexin type 9 monoclonal antibodies for acute coronary syndrome: a narrative review role of PCSK9 inhibition in ACS. Ann. Intern. Med., 2016, 164(9), 600-607.
[http://dx.doi.org/10.7326/M15-2994] [PMID: 26999484]
[158]
Gencer, B.; Montecucco, F.; Nanchen, D.; Carbone, F.; Klingenberg, R.; Vuilleumier, N.; Aghlmandi, S.; Heg, D.; Räber, L.; Auer, R.; Jüni, P.; Windecker, S.; Lüscher, T.F.; Matter, C.M.; Rodondi, N.; Mach, F. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur. Heart J., 2016, 37(6), 546-553.
[http://dx.doi.org/10.1093/eurheartj/ehv637] [PMID: 26655339]
[159]
Zhu, Y.M.; Anderson, T.J.; Sikdar, K.; Fung, M.; McQueen, M.J.; Lonn, E.M.; Verma, S. Association of proprotein convertase subtilisin/kexin type 9 (PCSK9) with cardiovascular risk in primary prevention. Arterioscler. Thromb. Vasc. Biol., 2015, 35(10), 2254-2259.
[http://dx.doi.org/10.1161/atvbaha.115.306172] [PMID: 26293463]
[160]
Leander, K.; Mälarstig, A.; Van’t Hooft, F.M.; Hyde, C.; Hellénius, M-L.; Troutt, J.S.; Konrad, R.J.; Öhrvik, J.; Hamsten, A.; de Faire, U. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation, 2016, 133(13), 1230-1239.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018531] [PMID: 26896437]
[161]
Werner, C.; Hoffmann, M.M.; Winkler, K.; Böhm, M.; Laufs, U. Risk prediction with proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with stable coronary disease on statin treatment. Vascul. Pharmacol., 2014, 62(2), 94-102.
[http://dx.doi.org/10.1016/j.vph.2014.03.004] [PMID: 24685817]
[162]
Li, S.; Li, J.J. PCSK9: a key factor modulating atherosclerosis. J. Atheroscler. Thromb., 2015, 22(3), 221-230.
[http://dx.doi.org/10.5551/jat.27615] [PMID: 25410128]
[163]
Sabatine, M.S.; Leiter, L.A.; Wiviott, S.D.; Giugliano, R.P.; Deedwania, P.; De Ferrari, G.M.; Murphy, S.A.; Kuder, J.F.; Gouni-Berthold, I.; Lewis, B.S.; Handelsman, Y.; Pineda, A.L.; Honarpour, N.; Keech, A.C.; Sever, P.S.; Pedersen, T.R. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol., 2017, 5(12), 941-950.
[http://dx.doi.org/10.1016/S2213-8587(17)30313-3] [PMID: 28927706]
[164]
Bonaca, M. P.; Nault, P.; Giugliano, R. P.; Keech, A. C.; Pineda, A. L.; Kanevsky, E.; Kuder, J.; Murphy, S. A.; Jukema, J. W.; Lewis, B. S. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation, 2018, 137(4), 338-350.
[http://dx.doi.org/10.1161/circulationaha.117.032235] [PMID: 29133605]
[165]
Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; Baigent, C. Cholesterol Treatment Trialists’ (CTT) Collaborators.. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet, 2012, 380(9841), 581-590.
[http://dx.doi.org/10.1016/S0140-6736(12)60367-5] [PMID: 22607822]
[166]
Ray, K.K.; Ginsberg, H.N.; Davidson, M.H.; Pordy, R.; Bessac, L.; Minini, P.; Eckel, R.H.; Cannon, C.P. reductions in atherogenic lipids and Major cardiovascular events. Circulation, 2016, 134(24), 1931-1943.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024604] [PMID: 27777279]
[167]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. ODYSSEY OUTCOMES Committees and Investigators.. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[168]
Ridker, P.M.; Revkin, J.; Amarenco, P.; Brunell, R.; Curto, M.; Civeira, F.; Flather, M.; Glynn, R.J.; Gregoire, J.; Jukema, J.W.; Karpov, Y.; Kastelein, J.J.P.; Koenig, W.; Lorenzatti, A.; Manga, P.; Masiukiewicz, U.; Miller, M.; Mosterd, A.; Murin, J.; Nicolau, J.C.; Nissen, S.; Ponikowski, P.; Santos, R.D.; Schwartz, P.F.; Soran, H.; White, H.; Wright, R.S.; Vrablik, M.; Yunis, C.; Shear, C.L.; Tardif, J.C. SPIRE Cardiovascular Outcome Investigators.. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med., 2017, 376(16), 1527-1539.
[http://dx.doi.org/10.1056/NEJMoa1701488] [PMID: 28304242]
[169]
Ridker, P.M.; Tardif, J.C.; Amarenco, P.; Duggan, W.; Glynn, R.J.; Jukema, J.W.; Kastelein, J.J.P.; Kim, A.M.; Koenig, W.; Nissen, S.; Revkin, J.; Rose, L.M.; Santos, R.D.; Schwartz, P.F.; Shear, C.L.; Yunis, C. SPIRE Investigators.. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N. Engl. J. Med., 2017, 376(16), 1517-1526.
[http://dx.doi.org/10.1056/NEJMoa1614062] [PMID: 28304227]
[170]
Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153.
[http://dx.doi.org/10.1056/NEJMoa1604304] [PMID: 27959767]
[171]
Toth, P.P.; Descamps, O.; Genest, J.; Sattar, N.; Preiss, D.; Dent, R.; Djedjos, C.; Wu, Y.; Geller, M.; Uhart, M.; Somaratne, R.; Wasserman, S.M. PROFICIO Investigators.. Pooled safety analysis of evolocumab in over 6000 patients from double-blind and open-label extension studies. Circulation, 2017, 135(19), 1819-1831.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025233] [PMID: 28249876]
[172]
Giugliano, R.P. No Evidence of Cognitive Issues When Evolocumab Added to Statin Therapy , 2017. Available at:. http://www.acc.org/about-acc/press-releases /2017/ 03/17/11/11/sat-8am-no-evidence-of-cognitive-issues-whenevolocumab- added-to-statin-therapy2017
[173]
Dent, R.; Joshi, R.; Stephen Djedjos, C.; Legg, J.; Elliott, M.; Geller, M.; Meyer, D.; Somaratne, R.; Recknor, C.; Weiss, R. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. Springerplus, 2016, 5(1), 300.
[http://dx.doi.org/10.1186/s40064-016-1892-3] [PMID: 27066336]
[174]
Gibbs, J.P.; Slatter, J.G.; Egbuna, O.; Geller, M.; Hamilton, L.; Dias, C.S.; Xu, R.Y.; Johnson, J.; Wasserman, S.M.; Emery, M.G. Evaluation of evolocumab (AMG 145), a fully human anti-PCSK9 IgG2 monoclonal antibody, in subjects with hepatic impairment. J. Clin. Pharmacol., 2017, 57(4), 513-523.
[http://dx.doi.org/10.1002/jcph.832] [PMID: 27667740]
[175]
Robinson, J.G.; Rosenson, R.S.; Farnier, M.; Chaudhari, U.; Sasiela, W.J.; Merlet, L.; Miller, K.; Kastelein, J.J. Safety of very low low-density lipoprotein cholesterol levels with alirocumab: pooled data from randomized trials. J. Am. Coll. Cardiol., 2017, 69(5), 471-482.
[http://dx.doi.org/10.1016/j.jacc.2016.11.037] [PMID: 28153102]
[176]
Cenedella, R.J. Cholesterol and cataracts. Surv. Ophthalmol., 1996, 40(4), 320-337.
[http://dx.doi.org/10.1016/S0039-6257(96)82007-8] [PMID: 8658343]
[177]
Kostis, J.; Dobrzynski, J.; Kostis, W.; Sargsyan, D. 5967 Effect of the magnitude of LDL lowering on the incidence of cataract among patients treated with statins or PCSK9 antibodies. Eur. Heart J., 2017, 38(Suppl. 1), ehx493.5967.
[http://dx.doi.org/10.1093/eurheartj/ehx493.5967 ]
[178]
Schmidt, A.F.; Swerdlow, D.I.; Holmes, M.V.; Patel, R.S.; Fairhurst-Hunter, Z.; Lyall, D.M.; Hartwig, F.P.; Horta, B.L.; Hyppönen, E.; Power, C.; Moldovan, M.; van Iperen, E.; Hovingh, G.K.; Demuth, I.; Norman, K.; Steinhagen-Thiessen, E.; Demuth, J.; Bertram, L.; Liu, T.; Coassin, S.; Willeit, J.; Kiechl, S.; Willeit, K.; Mason, D.; Wright, J.; Morris, R.; Wanamethee, G.; Whincup, P.; Ben-Shlomo, Y.; McLachlan, S.; Price, J.F.; Kivimaki, M.; Welch, C.; Sanchez-Galvez, A.; Marques-Vidal, P.; Nicolaides, A.; Panayiotou, A.G.; Onland-Moret, N.C.; van der Schouw, Y.T.; Matullo, G.; Fiorito, G.; Guarrera, S.; Sacerdote, C.; Wareham, N.J.; Langenberg, C.; Scott, R.; Luan, J.; Bobak, M.; Malyutina, S.; Pająk, A.; Kubinova, R.; Tamosiunas, A.; Pikhart, H.; Husemoen, L.L.; Grarup, N.; Pedersen, O.; Hansen, T.; Linneberg, A.; Simonsen, K.S.; Cooper, J.; Humphries, S.E.; Brilliant, M.; Kitchner, T.; Hakonarson, H.; Carrell, D.S.; McCarty, C.A.; Kirchner, H.L.; Larson, E.B.; Crosslin, D.R.; de Andrade, M.; Roden, D.M.; Denny, J.C.; Carty, C.; Hancock, S.; Attia, J.; Holliday, E.; O’Donnell, M.; Yusuf, S.; Chong, M.; Pare, G.; van der Harst, P.; Said, M.A.; Eppinga, R.N.; Verweij, N.; Snieder, H.; Christen, T.; Mook-Kanamori, D.O.; Gustafsson, S.; Lind, L.; Ingelsson, E.; Pazoki, R.; Franco, O.; Hofman, A.; Uitterlinden, A.; Dehghan, A.; Teumer, A.; Baumeister, S.; Dörr, M.; Lerch, M.M.; Völker, U.; Völzke, H.; Ward, J.; Pell, J.P.; Smith, D.J.; Meade, T.; Maitland-van der Zee, A.H.; Baranova, E.V.; Young, R.; Ford, I.; Campbell, A.; Padmanabhan, S.; Bots, M.L.; Grobbee, D.E.; Froguel, P.; Thuillier, D.; Balkau, B.; Bonnefond, A.; Cariou, B.; Smart, M.; Bao, Y.; Kumari, M.; Mahajan, A.; Ridker, P.M.; Chasman, D.I.; Reiner, A.P.; Lange, L.A.; Ritchie, M.D.; Asselbergs, F.W.; Casas, J.P.; Keating, B.J.; Preiss, D.; Hingorani, A.D.; Sattar, N. LifeLines Cohort study group;UCLEB consortium PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol., 2017, 5(2), 97-105.
[http://dx.doi.org/10.1016/S2213-8587(16)30396-5] [PMID: 27908689]
[179]
Fernández-Ruiz, I. Diabetes: PCSK9 inhibition is not associated with new-onset diabetes. Nat. Rev. Cardiol., 2016, 13(10), 568-569.
[http://dx.doi.org/10.1038/nrcardio.2016.132] [PMID: 27510548]
[180]
Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Kassahun, H.; Ruzza, A.; Ma, Y.; Somaratne, R.; Raal, F.J. Long-term Low-Density Lipoprotein Cholesterol-Lowering Efficacy, Persistence, and Safety of Evolocumab in Treatment of Hypercholesterolemia: Results Up to 4 Years From the Open-Label OSLER-1 Extension Study. JAMA Cardiol., 2017, 2(6), 598-607.
[http://dx.doi.org/10.1001/jamacardio.2017.0747] [PMID: 28291870]
[181]
Leiter, L.A.; Teoh, H.; Kallend, D.; Wright, R.S.; Landmesser, U.; Wijngaard, P.L.J.; Kastelein, J.J.P.; Ray, K.K. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status: the ORION-1 randomized clinical trial. Diabetes Care, 2018, 42(1), 173-176.
[http://dx.doi.org/10.2337/dc18-1491] [PMID: 30487231]
[182]
Leiter, L.; Teoh, H.; Kallend, D.; Wright, R.S.; Landmesser, U.; Wijngaard, P.L.; Kastelein, J.J.; Ray, K.K. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status without worsening glycemia, Am. Diabetes. Assoc., 2018, 67(Suppl. 1), 337-OR.
[http://dx.doi.org/10.2337/db18-337-OR]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy