Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

积极的β-淀粉样蛋白疫苗接种会导致阿尔茨海默氏病小鼠模型的海马表观遗传学变化

卷 16, 期 9, 2019

页: [861 - 870] 页: 10

弟呕挨: 10.2174/1567205016666190827122009

价格: $65

摘要

背景:尽管有证据表明表观遗传修饰在阿尔茨海默氏病(AD)的病理生理级联中发挥作用,但针对淀粉样β(Aβ)的主动免疫疗法正在研究中,以预防或减缓AD的进展。迄今为止,尚未研究过Aβ活性疫苗对表观遗传标记的影响。 目的:本研究旨在建立基于免疫的免疫治疗与基于MER5101的疫苗(由在Th2偏置的佐剂中配制的Aβ1-15拷贝与7aa间隔子缀合的白喉类毒素载体蛋白组成)之间的关系。 APPswe / PS1dE9小鼠海马中的修饰。 方法:正如我们先前报道的那样,免疫疗法从小鼠10个月大时开始,并在14个月大时进行行为测试,然后处死小鼠以进一步分析其大脑。在这项附加研究中,使用定量免疫组织化学测定了DNA甲基化和羟甲基化以及DNA甲基转移酶3A(DNMT3A)的总体水平,并将其与我们先前分析的免疫诱导的AD相关神经病理学和认知变化进行了比较。 结果:主动免疫不会影响总体DNA甲基化水平,但会导致DNA羟甲基化和DNMT3A水平降低。与免疫无关,DNA甲基化和羟甲基化水平以及DNMT3A的水平与行为表现呈负相关,而Aβ病理学和突触标记与DNA甲基化水平不相关,但与DNA羟甲基化水平和DNMT3A呈正相关。 结论:我们的结果表明,主动Aβ疫苗接种对APPswe / PS1dE9小鼠海马表观基因组有重要影响,并表明DNA甲基化和羟甲基化可能与认知功能有关。

关键词: 阿尔茨海默氏病,淀粉样β蛋白,活性疫苗,表观遗传学,DNA甲基化,小鼠模型。

« Previous
[1]
Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer’s disease. Alzheimers Dement 11(10): 1246-59. (2015).
[http://dx.doi.org/10.1016/j.jalz.2015.06.1884] [PMID: 26192465]
[2]
Bittar A, Sengupta U, Kayed R. Prospects for strain-specific immunotherapy in Alzheimer’s disease and tauopathies. NPJ Vaccines 3(1): 9. (2018).
[http://dx.doi.org/10.1038/s41541-018-0046-8] [PMID: 29507776]
[3]
Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64(9): 1553-62. (2005).
[http://dx.doi.org/10.1212/01.WNL.0000159740.16984.3C] [PMID: 15883316]
[4]
Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G, et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6(2): 144-51. (2009).
[http://dx.doi.org/10.2174/156720509787602852] [PMID: 19355849]
[5]
Farlow MR, Andreasen N, Riviere M-E, Vostiar I, Vitaliti A, Sovago J, et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther 7(1): 23. (2015).
[http://dx.doi.org/10.1186/s13195-015-0108-3] [PMID: 25918556]
[6]
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740): 173-7. (1999).
[http://dx.doi.org/10.1038/22124] [PMID: 10408445]
[7]
Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48(4): 567-79. (2000).
[http://dx.doi.org/10.1002/1531-8249(200010)48:4<567:AID-ANA3>3.0.CO;2-W] [PMID: 11026440]
[8]
Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Desai R, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48(4): 567-79. (2000).
[9]
Lemere CA, Spooner ET, Leverone JF, Mori C, Clements JD. Intranasal immunotherapy for the treatment of Alzheimer’s disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol Aging 23(6): 991-1000. (2002).
[http://dx.doi.org/10.1016/S0197-4580(02)00127-6] [PMID: 12470794]
[10]
Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, et al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815): 979-82. (2000).
[http://dx.doi.org/10.1038/35050110] [PMID: 11140685]
[11]
Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408(6815): 982-5. (2000).
[http://dx.doi.org/10.1038/35050116] [PMID: 11140686]
[12]
Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64(1): 94-101. (2005).
[http://dx.doi.org/10.1212/01.WNL.0000148604.77591.67] [PMID: 15642910]
[13]
Cerasoli E, Ryadnov MG, Austen BM. The elusive nature and diagnostics of misfolded Aβ oligomers. Front Chem 3: 17. (2015).
[http://dx.doi.org/10.3389/fchem.2015.00017] [PMID: 25853119]
[14]
Choudhuri S. From Waddington’s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods 21(4): 252-74. (2011).
[http://dx.doi.org/10.3109/15376516.2011.559695] [PMID: 21495865]
[15]
Liu L, Li Y, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol 10(1-2): 25-36. (2008).
[PMID: 18525104]
[16]
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol 131: 21-64. (2015).
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.002] [PMID: 26072273]
[17]
Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5(12)e15367 (2010).
[http://dx.doi.org/10.1371/journal.pone.0015367] [PMID: 21203455]
[18]
Kriaucionis S, Heintz N. The nuclear DNA base 5- hydroxymethylcytosine is present in Purkinje neurons and the brain. Science (80- ) 324(5929): 929-30. (2009).
[19]
Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 2013; 34(9): 2091-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.021] [PMID: 23582657]
[20]
Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, et al. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiol Aging 35(8): 1850-4. (2014).
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.002] [PMID: 24679604]
[21]
Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J. The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 378(1): 57-61. (2009).
[http://dx.doi.org/10.1016/j.bbrc.2008.10.173] [PMID: 19007750]
[22]
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of aging and age-related neurodegenerative disorders. Prog Mol Biol Transl Sci 158: 49-82. (2018).
[http://dx.doi.org/10.1016/bs.pmbts.2018.04.008]
[23]
Dogra P, Ghoneim HE, Abdelsamed HA, Youngblood B. Generating long-lived CD8(+) T-cell memory: Insights from epigenetic programs. Eur J Immunol 46(7): 1548-62. (2016).
[http://dx.doi.org/10.1002/eji.201545550] [PMID: 27230488]
[24]
Uthayakumar D, Paris S, Chapat L, Freyburger L, Poulet H, De Luca K. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations. Front Immunol 9: 2869. (2018).
[http://dx.doi.org/10.3389/fimmu.2018.02869] [PMID: 30564249]
[25]
Janjanam VD, Mukherjee N, Lockett GA, Rezwan FI. Kurukulaaratchy R5, Mitchell F, et al. Tetanus vaccination is associated with differential DNA-methylation: reduces the risk of asthma in adolescence. Vaccine 34(51): 6493-501. (2016).
[http://dx.doi.org/10.1016/j.vaccine.2016.10.068] [PMID: 27866770]
[26]
Zimmermann MT, Oberg AL, Grill DE, Ovsyannikova IG, Haralambieva IH, Kennedy RB, et al. System-wide associations between DNA-methylation, gene expression, and humoral immune response to influenza vaccination. PLoS One 11(3)e0152034 (2016).
[http://dx.doi.org/10.1371/journal.pone.0152034] [PMID: 27031986]
[27]
Pezeshki A, Ovsyannikova IG, McKinney BA, Poland GA, Kennedy RB. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines 18(3): 253-67. (2019).
[http://dx.doi.org/10.1080/14760584.2019.1575208] [PMID: 30700167]
[28]
Liu B, Frost JL, Sun J, Fu H, Grimes S, Blackburn P, et al. MER5101, a novel Aβ1-15: DT conjugate vaccine, generates a robust anti-Aβ antibody response and attenuates Aβ pathology and cognitive deficits in APPswe/PS1ΔE9 transgenic mice. J Neurosci 33(16): 7027-37. (2013).
[http://dx.doi.org/10.1523/JNEUROSCI.5924-12.2013] [PMID: 23595760]
[29]
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: Evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet 13(2): 159-70. (2004).
[30]
Maier M, Seabrook TJ, Lemere CA. Modulation of the humoral and cellular immune response in Abeta immunotherapy by the adjuvants monophosphoryl lipid A (MPL), cholera toxin B subunit (CTB) and E. coli enterotoxin LT(R192G). Vaccine 23(44): 5149-59. (2005).
[http://dx.doi.org/10.1016/j.vaccine.2005.06.018] [PMID: 16054274]
[31]
Frost JL, Liu B, Rahfeld J-U, Kleinschmidt M, O’Nuallain B, Le KX, et al. An anti-pyroglutamate-3 Aβ vaccine reduces plaques and improves cognition in APPswe/PS1ΔE9 mice. Neurobiol Aging 36(12): 3187-99. (2015).
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.021] [PMID: 26453001]
[32]
Wang J, Gong B, Zhao W, Tang C, Varghese M, Nguyen T, et al. Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63(2): 645-54. (2014).
[http://dx.doi.org/10.2337/db13-1063] [PMID: 24154559]
[33]
Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2e132 (2012).
[http://dx.doi.org/10.1038/tp.2012.55] [PMID: 22760556]
[34]
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice. Brain 140(12): 3252-68. (2017).
[http://dx.doi.org/10.1093/brain/awx272] [PMID: 29155979]
[35]
Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 35(6): 1334-44. (2014).
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031] [PMID: 24387984]
[36]
Lardenoije R, van den Hove DLA, Havermans M, van Casteren A, Le KX, Palmour R, et al. Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer’s disease. Mol Cell Neurosci 86: 1-15. (2018).
[http://dx.doi.org/10.1016/j.mcn.2017.11.002] [PMID: 29113959]
[37]
Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol 18(2): 225-33. (2016).
[http://dx.doi.org/10.1038/ncb3296] [PMID: 26751286]
[38]
Chen C-C, Wang K-Y, Shen C-KJ. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 288(13): 9084-91. (2013).
[http://dx.doi.org/10.1074/jbc.M112.445585] [PMID: 23393137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy