Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

老年2型糖尿病患者血清GSK-3β/ BDNF比值与轻度认知障碍的强相关性

卷 16, 期 12, 2019

页: [1151 - 1160] 页: 10

弟呕挨: 10.2174/1567205016666190827112546

价格: $65

conference banner
摘要

背景:糖原合酶激酶(GSK)-3β和脑源性神经营养因子(BDNF)在轻度认知障碍(MCI)和2型糖尿病(T2DM)中起着至关重要的作用。潜在的机制可能涉及炎症和氧化应激。 目的:探讨老年T2DM患者中GSK-3β/ BDNF比值与MCI的相关性,以及GSK-3β/ BDNF比值是否可作为M2并发T2DM(MD)的新诊断生物标志物。 方法:根据认知水平和GSK-3β/ BDNF比值四分位数对326例中国老年T2DM患者进行分类。根据国家老年痴呆协会协会工作组标准诊断出MCI。除常规血尿和生化检查外,还使用蒙特利尔认知评估量表(MoCA)评估认知功能,并使用ELISA方法测量GSK-3β活性和血清BDNF,白介素1β(IL-1β)的水平,高迁移率族box-1(HMGB1)蛋白,丙二醛(MDA)和8-isoprostaglandinF2α(8-iso-PGF2α)。 结果:我们发现GSK-3β活性与BDNF呈负相关(r = -0.270,P = 0.008),而GSK-3β/ BDNF比值较高的患者的MoCA评分较低(P = 0.001)。与没有MCI(nMD)的T2DM患者相比,MD患者的GSK-3β活性和GSK-3β/ BDNF比率更高,但BDNF水平较低。至于炎症和氧化应激,IL-1β与GSK-3β活性呈负相关,而8-isoPGF2α与GSK-3β活性和GSK-3β/ BDNF比值呈正相关。当GSK-3β/ BDNF比值四分位数从最低值升高到最高值时,MCI的优势比逐渐增加(6.90,95%CI 3.22-14.78)。相反,MoCA评分与GSK-3β/ BDNF比,年龄和快速血糖(FBG)相关,其中GSK-3β/ BDNF比对认知的影响最大(β= -0.199,P <0.001)。 结论:我们的数据提供了GSK-3β/ BDNF比值与MCI之间密切联系的证据。与单独使用GSK-3β或BDNF相比,GSK-3β/ BDNF比率可以作为更好的MD诊断生物标志物,并且增加的GSK-3β/ BDNF比率表明认知功能较差。

关键词: 轻度认知障碍,2型糖尿病,糖原合成酶激酶-3β,脑源性神经营养因子,炎症,氧化应激。

« Previous
[1]
Pu D, Zhao Y, Chen J, Sun Y, Lv A, Zhu S, et al. Protective effects of sulforaphane on cognitive impairments and AD-like lesions in diabetic mice are associated with the upregulation of Nrf2 transcription activity. Neuroscience 381: 35-45. (2018).
[2]
Zhai Y, Meng X, Ye T, Xie W, Sun G, Sun X, et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules 23(3): 522. (2018).
[3]
Mariani E, Monastero R, Mecocci P. Mild cognitive impairment: a systematic review. J Alzheimers Dis 12(1): 23-35. (2007).
[4]
Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 71(9): 805-13. (2012).
[5]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183-94. (2004).
[6]
Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. JAMA Neurol 61(5): 661-6. (2004).
[7]
Cheng PY, Sy HN, Wu SL, Wang WF, Chen YY. Newly diagnosed type 2 diabetes and risk of dementia: a population-based 7-year follow-up study in Taiwan. J Diabetes Complications 26(5): 382-7. (2012).
[8]
Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes & Endocrinol 2(3): 246-55. (2014).
[9]
Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, et al. Antisense oligonucleotide against GSK-3beta in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 67: 387-95. (2014).
[10]
Wang H, Kumar A, Lamont RJ. Scott DA3. GSK3beta and the control of infectious bacterial diseases. Trends Microbiol 22(4): 208-17. (2014).
[11]
Borror A. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Med Hypotheses 106: 1-5. (2017).
[12]
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20(1-2): 27-39. (2001).
[13]
Bhat RV, Budd SL. GSK3beta signalling: casting a wide net in Alzheimer’s disease. Neurosignals 11(5): 251-61. (2002).
[14]
Hye A, Kerr F, Archer N, Foy C, Poppe M, Brown R, et al. Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci Lett 373(1): 1-4. (2005).
[15]
Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, Diniz BS, et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res 45(2): 220-4. (2011).
[16]
Hemminqs BA, Yellowlees D, Cohen P. Glycogen synthase KINASE-3 from rabbit skeletal muscle. Methods Enzymol 99: 337-45. (1983).
[17]
Ko CY, Wang WL, Wang SM, Chu YY, Chang WC, Wang JM. Glycogen synthase kinase-3beta-mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol Aging 35(1): 24-34. (2014).
[18]
Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3(6): 479-87. (2004).
[19]
Xu ZP, Yang SL, Zhao S, Zheng CH, Li HH, et al. Biomarkers for early diagnostic of mild cognitive impairment in type-2 diabetes patients: a multicentre, retrospective, nested case-control study. EBioMedicine 5: 105-13. (2016).
[20]
Datusalia AK, Sharma SS. Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol 50(2): 390-405. (2014).
[21]
Wang X, Zhao L. Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3beta signaling pathway. Biochem Biophys Res Commun 473(2): 428-34. (2016).
[22]
Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3): 331-7. (2009).
[23]
Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry 22(2): 312-20. (2017).
[24]
Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50(2): 431-8. (2007).
[25]
Boyuk B, Degirmencioglu S, Atalay H, Guzel S, Acar A, Celebi A, et al. Relationship between levels of brain-derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus. J Diabetes Res 2014978143 (2014).
[26]
Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. Exp Diabetes Res 20172823671 (2017).
[27]
Yang W, Dou KF, Song WJ. Prevalence of diabetes among men and women in China. N Engl J Med 362(12): 1090-101. (2010).
[28]
O’Driscoll C, Shaikh M. Cross-cultural applicability of the montreal cognitive assessment (MoCA): a systematic review. J Alzheimers Dis 58(3): 789-801. (2017).
[29]
Zung WWK. a rating instrument for anxiety disorders. Psychosomatics 12(6): 371-9. (1971).
[30]
Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1): 37-49. (1982).
[31]
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 270-9. (2011).
[32]
Alberti KGMM, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15(7): 539-53. (1998).
[33]
Hayes AF, Scharkow M. The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: does method really matter? Psychol Sci 24(10): 1918-27. (2013).
[34]
Romero-Moreno R, Losada A, Márquez-González M, Mausbach BT. Stressors and anxiety in dementia caregiving: multiple mediation analysis of rumination, experiential avoidance, and leisure. Int Psychogeriatr 28(11): 1835-44. (2016).
[35]
Xu ZP, Gan GS, Liu YM, Xiao JS, Liu HX, Mei B, et al. Adiponectin attenuates streptozotocin-induced tau hyperphosphorylation and cognitive deficits by rescuing PI3K/Akt/GSK-3beta Pathway. Neurochem Res 43(2): 316-23. (2018).
[36]
Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, et al. A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Front Aging Neurosci 6: 69. (2014).
[37]
Zheng T, Liu H, Qin L, Chen B, Zhang X, Hu X, et al. Oxidative stress-mediated influence of plasma DPP4 activity to BDNF ratio on mild cognitive impairment in elderly type 2 diabetic patients: results from the GDMD study in China. Metabolism 87: 105-12. (2018).
[38]
Gao C, Hölscher C, Liu Y, Li L. GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev Neurosci 23(1): 1-11. (2011).
[39]
Price JB, Bronars C, Erhardt S, Cullen KR, Schwieler L, Berk M, et al. Bioenergetics and synaptic plasticity as potential targets for individualizing treatment for depression. Neurosci Biobehav Rev 90: 212-20. (2018).
[40]
Dursun E, Gezen-Ak D, Hanağası H, Bilgiç B, Lohmann E, Ertan S, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283: 50-7. (2015).
[41]
Tian S, Huang R, Han J, Cai R, Guo D, Lin H, et al. Increased plasma Interleukin-1beta level is associated with memory deficits in type 2 diabetic patients with mild cognitive impairment. Psychoneuroendocrinology 96: 148-54. (2018).
[42]
Duan Q, Sun W, Yuan H, Mu X. MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3beta/Nrf2/ARE signaling pathway. Arch Med Sci 14(4): 735-44. (2018).
[43]
Şirin FB, Kumbul Doğuç D, Vural H, Eren I, Inanli I, Sütçü R, et al. Plasma 8-isoPGF2α and serum melatonin levels in patients with minimal cognitive impairment and Alzheimer disease. Turk J Med Sci 45(5): 1073-7. (2015).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy