Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Therapeutic Progress and Knowledge Basis on the Natriuretic Peptide System in Heart Failure

Author(s): Shihui Fu, Zhenyu Chang, Leiming Luo* and Juelin Deng*

Volume 19, Issue 20, 2019

Page: [1850 - 1866] Pages: 17

DOI: 10.2174/1568026619666190826163536

Price: $65

Abstract

Notwithstanding substantial improvements in diagnosis and treatment, Heart Failure (HF) remains a major disease burden with high prevalence and poor outcomes worldwide. Natriuretic Peptides (NPs) modulate whole cardiovascular system and exhibit multiple cardio-protective effects, including the counteraction of the Renin–Angiotensin–Aldosterone System (RAAS) and Sympathetic Nervous System (SNS), promotion of vasodilatation and natriuresis, and inhibition of hypertrophy and fibrosis. Novel pharmacological therapies based on NPs may achieve a valuable shift in managing patients with HF from inhibiting RAAS and SNS to a reversal of neurohormonal imbalance. Enhancing NP bioavailability through exogenous NP administration and inhibiting Neutral Endopeptidase (NEP) denotes valuable therapeutic strategies for HF. On the one hand, NEP-resistant NPs may be more specific as therapeutic choices in patients with HF. On the other hand, NEP Inhibitors (NEPIs) combined with RAAS inhibitors have proved to exert beneficial effects and reduce adverse events in patients with HF. Highly effective and potentially safe Angiotensin Receptor Blocker Neprilysin Inhibitors (ARNIs) have been developed after the failure of NEPIs and Vasopeptidase Inhibitors (VPIs) due to lacking efficacy and safety. Therapeutic progress and knowledge basis on the NP system in HF are summarized in the current review.

Keywords: Angiotensin receptor blocker neprilysin inhibitor, Designer natriuretic peptide, Heart failure, Natriuretic peptide, Neutral endopeptidase, Vasopeptidase inhibitor.

« Previous
Graphical Abstract

[1]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Judd, S.E.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Mackey, R.H.; Magid, D.J.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Mussolino, M.E.; Neumar, R.W.; Nichol, G.; Pandey, D.K.; Paynter, N.P.; Reeves, M.J.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation, 2014, 129(3), e28-e292.
[http://dx.doi.org/10.1161/01.cir.0000441139.02102.80] [PMID: 24352519]
[2]
Chen, Y.; Burnett, J.C., Jr Biochemistry, therapeutics, and biomarker implications of neprilysin in cardiorenal disease. Clin. Chem., 2017, 63(1), 108-115.
[http://dx.doi.org/10.1373/clinchem.2016.262907] [PMID: 28062615]
[3]
Fu, S.; Ping, P.; Zhu, Q.; Ye, P.; Luo, L. Brain natriuretic peptide and its biochemical, analytical, and clinical issues in heart failure: a narrative review. Front. Physiol., 2018, 9, 692.
[http://dx.doi.org/10.3389/fphys.2018.00692] [PMID: 29922182]
[4]
McMurray, J.J. Neprilysin inhibition to treat heart failure: A tale of science, serendipity, and second chances. Eur. J. Heart Fail., 2015, 17(3), 242-247.
[http://dx.doi.org/10.1002/ejhf.250] [PMID: 25756942]
[5]
Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng., 2018, 12, 2.
[http://dx.doi.org/10.1186/s13036-017-0093-0] [PMID: 29344085]
[6]
de Bold, A.J.; Borenstein, H.B.; Veress, A.T.; Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci. 28:89-94, 1981. J. Am. Soc. Nephrol., 2001, 12(2), 403-409.
[PMID: 11158233]
[7]
Ogawa, Y.; Itoh, H.; Nakao, K. Molecular biology and biochemistry of natriuretic peptide family. Clin. Exp. Pharmacol. Physiol., 1995, 22(1), 49-53.
[http://dx.doi.org/10.1111/j.1440-1681.1995.tb01918.x] [PMID: 7768034]
[8]
Knowlton, K.U.; Rockman, H.A.; Itani, M.; Vovan, A.; Seidman, C.E.; Chien, K.R. Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium. J. Clin. Invest., 1995, 96(3), 1311-1318.
[http://dx.doi.org/10.1172/JCI118166] [PMID: 7657806]
[9]
Yan, W.; Wu, F.; Morser, J.; Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8525-8529.
[http://dx.doi.org/10.1073/pnas.150149097] [PMID: 10880574]
[10]
Sugawara, A.; Nakao, K.; Morii, N.; Yamada, T.; Itoh, H.; Shiono, S.; Saito, Y.; Mukoyama, M.; Arai, H.; Nishimura, K. Synthesis of atrial natriuretic polypeptide in human failing hearts. Evidence for altered processing of atrial natriuretic polypeptide precursor and augmented synthesis of beta-human ANP. J. Clin. Invest., 1988, 81(6), 1962-1970.
[http://dx.doi.org/10.1172/JCI113544] [PMID: 2968368]
[11]
van Kimmenade, R.R.; Januzzi, J.L., Jr The evolution of the natriuretic peptides-Current applications in human and animal medicine. J. Vet. Cardiol., 2009, 11(Suppl. 1), S9-S21.
[http://dx.doi.org/10.1016/j.jvc.2009.01.001] [PMID: 19285934]
[12]
Nishikimi, T.; Kuwahara, K.; Nakao, K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol., 2011, 57(2), 131-140.
[http://dx.doi.org/10.1016/j.jjcc.2011.01.002] [PMID: 21296556]
[13]
Yandle, T.G.; Richards, A.M. B-type Natriuretic Peptide circulating forms: Analytical and bioactivity issues. Clin. Chim. Acta, 2015, 448, 195-205.
[http://dx.doi.org/10.1016/j.cca.2015.07.004] [PMID: 26160054]
[14]
Zachariah, J.P.; Aliku, T.; Scheel, A.; Hasan, B.S.; Lwabi, P.; Sable, C.; Beaton, A.Z. Amino-terminal pro-brain natriuretic peptide in children with latent rheumatic heart disease. Ann. Pediatr. Cardiol., 2016, 9(2), 120-125.
[http://dx.doi.org/10.4103/0974-2069.180668] [PMID: 27212845]
[15]
Minamino, N.; Horio, H.; Nishikimi, T. Natriuretic peptides in the cardiovascular system.The handbook of biologically active peptides, 1st ed; Kastin, A.J., Ed.; Academic Press: New York, London, 2006, pp. 1217-1225.
[http://dx.doi.org/10.1016/B978-012369442-3/50168-9]
[16]
Abassi, Z.; Karram, T.; Ellaham, S.; Winaver, J.; Hoffman, A. Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol. Ther., 2004, 102(3), 223-241.
[http://dx.doi.org/10.1016/j.pharmthera.2004.04.004] [PMID: 15246247]
[17]
Ma, K.K.; Ogawa, T.; de Bold, A.J. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J. Mol. Cell. Cardiol., 2004, 36(4), 505-513.
[http://dx.doi.org/10.1016/j.yjmcc.2004.01.001] [PMID: 15081310]
[18]
Clerico, A.; Vittorini, S.; Passino, C. Circulating forms of the b-type natriuretic peptide prohormone: pathophysiologic and clinical considerations. Adv. Clin. Chem., 2012, 58, 31-44.
[http://dx.doi.org/10.1016/B978-0-12-394383-5.00008-4] [PMID: 22950341]
[19]
Nishikimi, T.; Minamino, N.; Ikeda, M.; Takeda, Y.; Tadokoro, K.; Shibasaki, I.; Fukuda, H.; Horiuchi, Y.; Oikawa, S.; Ieiri, T.; Matsubara, M.; Ishimitsu, T. Diversity of molecular forms of plasma brain natriuretic peptide in heart failure--different proBNP-108 to BNP-32 ratios in atrial and ventricular overload. Heart, 2010, 96(6), 432-439.
[http://dx.doi.org/10.1136/hrt.2009.178392] [PMID: 19966110]
[20]
Ichiki, T.; Huntley, B.K.; Burnett, J.C., Jr BNP molecular forms and processing by the cardiac serine protease corin. Adv. Clin. Chem., 2013, 61, 1-31.
[http://dx.doi.org/10.1016/B978-0-12-407680-8.00001-4] [PMID: 24015598]
[21]
Nishikimi, T.; Kuwahara, K.; Nakagawa, Y.; Kangawa, K.; Minamino, N.; Nakao, K. Complexity of molecular forms of B-type natriuretic peptide in heart failure. Heart, 2013, 99(10), 677-679.
[http://dx.doi.org/10.1136/heartjnl-2012-302929] [PMID: 23118344]
[22]
Liang, F.; O’Rear, J.; Schellenberger, U.; Tai, L.; Lasecki, M.; Schreiner, G.F.; Apple, F.S.; Maisel, A.S.; Pollitt, N.S.; Protter, A.A. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J. Am. Coll. Cardiol., 2007, 49(10), 1071-1078.
[http://dx.doi.org/10.1016/j.jacc.2006.10.063] [PMID: 17349887]
[23]
Menon, S.G.; Mills, R.M.; Schellenberger, U.; Saqhir, S.; Protter, A.A. Clinical implications of defective B-type natriuretic peptide. Clin. Cardiol., 2009, 32(12), E36-E41.
[http://dx.doi.org/10.1002/clc.20480] [PMID: 20014209]
[24]
Dickey, D.M.; Potter, L.R. ProBNP(1-108) is resistant to degradation and activates guanylyl cyclase-A with reduced potency. Clin. Chem., 2011, 57(9), 1272-1278.
[http://dx.doi.org/10.1373/clinchem.2011.169151] [PMID: 21768217]
[25]
Nishikimi, T.; Okamoto, H.; Nakamura, M.; Ogawa, N.; Horii, K.; Nagata, K.; Nakagawa, Y.; Kinoshita, H.; Yamada, C.; Nakao, K.; Minami, T.; Kuwabara, Y.; Kuwahara, K.; Masuda, I.; Kangawa, K.; Minamino, N.; Nakao, K. Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure. PLoS One, 2013, 8(1)e53233
[http://dx.doi.org/10.1371/journal.pone.0053233] [PMID: 23365636]
[26]
Seferian, K.R.; Tamm, N.N.; Semenov, A.G.; Mukharyamova, K.S.; Tolstaya, A.A.; Koshkina, E.V.; Kara, A.N.; Krasnoselsky, M.I.; Apple, F.S.; Esakova, T.V.; Filatov, V.L.; Katrukha, A.G. The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure. Clin. Chem., 2007, 53(5), 866-873.
[http://dx.doi.org/10.1373/clinchem.2006.076141] [PMID: 17384012]
[27]
Heublein, D.M.; Huntley, B.K.; Boerrigter, G.; Cataliotti, A.; Sandberg, S.M.; Redfield, M.M.; Burnett, J.C., Jr Immunoreactivity and guanosine 3′,5′-cyclic monophosphate activating actions of various molecular forms of human B-type natriuretic peptide. Hypertension, 2007, 49(5), 1114-1119.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.081083] [PMID: 17372040]
[28]
Scirica, B.M.; Braunwald, E.; Raz, I.; Cavender, M.A.; Morrow, D.A.; Jarolim, P.; Udell, J.A.; Mosenzon, O. Im, K.; Umez-Eronini, A.A.; Pollack, P.S.; Hirshberg, B.; Frederich, R.; Lewis, B.S.; McGuire, D.K.; Davidson, J.; Steg, P.G.; Bhatt, D.L. SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation, 2015, 132(15)e198
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015511] [PMID: 26459088]
[29]
Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; Cavender, M.A.; Udell, J.A.; Desai, N.R.; Mosenzon, O.; McGuire, D.K.; Ray, K.K.; Leiter, L.A.; Raz, I. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med., 2013, 369(14), 1317-1326.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
[30]
Elgendy, I.Y.; Mahmoud, A.N.; Barakat, A.F.; Elgendy, A.Y.; Saad, M.; Abuzaid, A.; Wayangankar, S.A.; Bavry, A.A. Cardiovascular Safety of Dipeptidyl-Peptidase IV Inhibitors: a meta-analysis of placebo-controlled randomized trials. Am. J. Cardiovasc. Drugs, 2017, 17(2), 143-155.
[http://dx.doi.org/10.1007/s40256-016-0208-x] [PMID: 27873238]
[31]
Li, L.; Li, S.; Deng, K.; Liu, J.; Vandvik, P.O.; Zhao, P.; Zhang, L.; Shen, J.; Bala, M.M.; Sohani, Z.N.; Wong, E.; Busse, J.W.; Ebrahim, S.; Malaga, G.; Rios, L.P.; Wang, Y.; Chen, Q.; Guyatt, G.H.; Sun, X. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ, 2016, 352, i610.
[http://dx.doi.org/10.1136/bmj.i610] [PMID: 26888822]
[32]
Wu, C.; Wu, F.; Pan, J.; Morser, J.; Wu, Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J. Biol. Chem., 2003, 278(28), 25847-25852.
[http://dx.doi.org/10.1074/jbc.M301223200] [PMID: 12736257]
[33]
Jiang, J.; Pristera, N.; Wang, W.; Zhang, X.; Wu, Q. Effect of sialylated O-glycans in pro-brain natriuretic peptide stability. Clin. Chem., 2010, 56(6), 959-966.
[http://dx.doi.org/10.1373/clinchem.2009.140558] [PMID: 20348402]
[34]
Mangiafico, S.; Costello-Boerrigter, L.C.; Andersen, I.A.; Cataliotti, A.; Burnett, J.C., Jr Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur. Heart J., 2013, 34(12), 886-893.
[http://dx.doi.org/10.1093/eurheartj/ehs262] [PMID: 22942338]
[35]
Rubattu, S.; Sciarretta, S.; Volpe, M. Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin. Sci. (Lond.), 2014, 127(1), 1-13.
[http://dx.doi.org/10.1042/CS20130427] [PMID: 24611929]
[36]
Rubattu, S.; Evangelista, A.; Barbato, D.; Barba, G.; Stanzione, R.; Iacone, R.; Volpe, M.; Strazzullo, P. Atrial natriuretic peptide (ANP) gene promoter variant and increased susceptibility to early development of hypertension in humans. J. Hum. Hypertens., 2007, 21(10), 822-824.
[http://dx.doi.org/10.1038/sj.jhh.1002228] [PMID: 17525707]
[37]
Conen, D.; Cheng, S.; Steiner, L.L.; Buring, J.E.; Ridker, P.M.; Zee, R.Y. Association of 77 polymorphisms in 52 candidate genes with blood pressure progression and incident hypertension: the Women’s Genome Health Study. J. Hypertens., 2009, 27(3), 476-483.
[http://dx.doi.org/10.1097/HJH.0b013e32832104c8] [PMID: 19330901]
[38]
Sciarretta, S.; Marchitti, S.; Bianchi, F.; Moyes, A.; Barbato, E.; Di Castro, S.; Stanzione, R.; Cotugno, M.; Castello, L.; Calvieri, C.; Eberini, I.; Sadoshima, J.; Hobbs, A.J.; Volpe, M.; Rubattu, S. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ. Res., 2013, 112(10), 1355-1364.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301325] [PMID: 23529183]
[39]
Cannone, V.; Boerrigter, G.; Cataliotti, A.; Costello-Boerrigter, L.C.; Olson, T.M.; McKie, P.M.; Heublein, D.M.; Lahr, B.D.; Bailey, K.R.; Averna, M.; Redfield, M.M.; Rodeheffer, R.J.; Burnett, J.C., Jr A genetic variant of the atrial natriuretic peptide gene is associated with cardiometabolic protection in the general community. J. Am. Coll. Cardiol., 2011, 58(6), 629-636.
[http://dx.doi.org/10.1016/j.jacc.2011.05.011] [PMID: 21798427]
[40]
Cannone, V.; Cefalu’, A.B.; Noto, D.; Scott, C.G.; Bailey, K.R.; Cavera, G.; Pagano, M.; Sapienza, M.; Averna, M.R.; Burnett, J.C., Jr The atrial natriuretic peptide genetic variant rs5068 is associated with a favorable cardiometabolic phenotype in a Mediterranean population. Diabetes Care, 2013, 36(9), 2850-2856.
[http://dx.doi.org/10.2337/dc12-2337] [PMID: 23637347]
[41]
International Consortium for Blood Pressure Genome-Wide Association Studies,. Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D. Verwoert, G.C.; Hwang, S.J.; Pihur, V.; Vollenweider, P.; O'Reilly, P.F.; Amin, N.; Bragg-Gresham, J.L.; Teumer, A.; Glazer, N.L.; Launer, L.; Zhao, J.H.;.Aulchenko, Y.; Heath, S.; Sõber, S.; Parsa, A.; Luan, J.; Arora, P.; Dehghan, A.; Zhang, F.; Lucas, G.; Hicks, A.A.; Jackson, A.U.; Peden, J.F.; Tanaka, T.; Wild, S.H.; Rudan, I.; Igl, W.; Milaneschi, Y.; Parker, A.N.; Fava, C.; Chambers, J.C.; Fox, E.R.; Kumari, M.; Go, M.J.; van der Harst, P.; Kao, W.H.; Sjögren, M.; Vinay, D.G.; Alexander, M.; Tabara, Y.; Shaw- Hawkins, S.; Whincup, P.H.; Liu, Y.; Shi, G.; Kuusisto, J.; Tayo, B.; Seielstad, M.; Sim, X.; Nguyen, K.D.; Lehtimäki, T.; Matullo, G.; Wu ,Y.; Gaunt, T.R.; Onland-Moret, N.C.; Cooper, M.N.; Platou, C.G.; Org, E.; Hardy, R.; Dahgam, S.; Palmen, J.; Vitart, V.; Braund, P.S.; Kuznetsova, T.; Uiterwaal, C.S.; Adeyemo, A.; Palmas, W.; Campbell, H.; Ludwig, B.; Tomaszewski, M.; Tzoulaki, I.; Palmer, N.D.; CARDIoGRAM consortium; CKDGen Consortium; KidneyGen Consortium; EchoGen consortium; CHARGEHF consortium, Aspelund, T.; Garcia, M.; Chang, Y.P.; O'Connell, J.R.; Steinle, N.I.; Grobbee, D.E.; Arking, D.E.; Kardia, S.L.; Morrison, A.C.; Hernandez, D.; Najjar, S.; McArdle, W.L.; Hadley, D.; Brown, M.J.; Connell, J.M.; Hingorani, A.D.; Day, I.N.; Lawlor, D.A.; Beilby, J.P.; Lawrence, R.W.; Clarke, R.; Hopewell, J.C.; Ongen, H.; Dreisbach, A.W.; Li, Y.; Young, J.H.; Bis, J.C.; Kähönen, M.; Viikari, J.; Adair, L.S.; Lee, N.R.; Chen, M.H.; Olden, M.; Pattaro, C.; Bolton, J.A.; Köttgen, A.; Bergmann, S.; Mooser, V.; Chaturvedi, N.; Frayling, T.M.; Islam, M.; Jafar, T.H.; Erdmann, J.; Kulkarni, S.R.; Bornstein, S.R.; Grässler, J.; Groop, L.; Voight, B.F.; Kettunen, J.; Howard, P.; Taylor, A.; Guarrera, S.; Ricceri, F.; Emilsson, V.; Plump, A.; Barroso, I.; Khaw, K.T.; Weder, A.B.; Hunt, S.C.; Sun, Y.V.; Bergman, R.N.; Collins, F.S.; Bonnycastle, L.L.; Scott, L.J.; Stringham, H.M.; Peltonen, L.; Perola, M.; Vartiainen, E.; Brand ,S.M.; Staessen, J.A.; Wang, T.J.; Burton, P.R.; Soler, A.M.; Dong, Y.; Snieder, H.; Wang, X.; Zhu, H.; Lohman, K.K.; Rudock, M.E.; Heckbert, S.R.; Smith, N.L.; Wiggins, K.L.; Doumatey, A.; Shriner, D.; Veldre, G.; Viigimaa, M.; Kinra, S.; Prabhakaran, D.; Tripathy, V.; Langefeld, C.D.; Rosengren, A.; Thelle, D.S.; Corsi, A.M.; Singleton, A.; Forrester, T.; Hilton, G.; McKenzie, C.A.; Salako, T.; Iwai, N.; Kita, Y.; Ogihara, T.; Ohkubo, T.; Okamura, T.; Ueshima, H.; Umemura, S.; Eyheramendy, S.; Meitinger, T.; Wichmann, H.E.; Cho, Y.S.; Kim, H.L.; Lee, J.Y.; Scott, J.; Sehmi, J.S.; Zhang, W.; Hedblad, B.; Nilsson, P.; Smith, G.D.; Wong, A.; Narisu, N.; Stančáková, A.; Raffel, L.J.; Yao, J.; Kathiresan, S.; O'Donnell, C.J.; Schwartz, S.M.; Ikram, M.A.; Longstreth, W.T. Jr.; Mosley, T.H.; Seshadri, S.; Shrine, N.R.; Wain, L.V.; Morken, M.A.; Swift, A.J.; Laitinen, J.; Prokopenko, I.; Zitting, P.; Cooper, J.A.; Humphries, S.E.; Danesh, J.; Rasheed, A.; Goel, A.; Hamsten, A.; Watkins, H.; Bakker, S.J.; van Gilst, W.H.; Janipalli, C.S.; Mani, K.R.; Yajnik, C.S.; Hofman, A.; Mattace-Raso, F.U.; Oostra, B.A.; Demirkan, A.; Isaacs, A.; Rivadeneira, F.; Lakatta, E.G.; Orru, M.; Scuteri, A.; Ala-Korpela, M.; Kangas, A.J.; Lyytikäinen, L.P.; Soininen, P.; Tukiainen, T.; Würtz, P.; Ong, R.T.; Dörr, M.; Kroemer, H.K.; Völker, U.; Völzke, H.; Galan, P.; Hercberg, S.; Lathrop, M.; Zelenika, D.; Deloukas, P.; Mangino, M.; Spector, T.D.; Zhai, G.; Meschia, J.F.; Nalls, M.A.; Sharma, P.; Terzic, J.; Kumar, M.V.; Denniff, M.; Zukowska-Szczechowska, E.; Wagenknecht, L.E.; Fowkes, F.G.; Charchar, F.J.; Schwarz, P.E.; Hayward, C.; Guo,X.; Rotimi, C.; Bots, M.L.; Brand, E.; Samani, N.J.; Polasek, O.;Talmud, P.J.; Nyberg, F.; Kuh, D.; Laan, M.; Hveem, K.; Palmer, L.J.; van der Schouw, Y.T.; Casas, J.P.; Mohlke, K.L.; Vineis, P.; Raitakari, O.; Ganesh, S.K.; Wong, T.Y.; Tai, E.S.; Cooper, R.S.; Laakso, M.; Rao, D.C.; Harris, T.B.; Morris, R.W.; Dominiczak, A.F.; Kivimaki, M.; Marmot, M.G.; Miki, T.; Saleheen, D.; Chandak, G.R.; Coresh, J.; Navis, G.; Salomaa, V.; Han, B.G.; Zhu, X.; Kooner, J.S.; Melander, O.; Ridker, P.M.; Bandinelli, S.; Gyllensten, U.B.; Wright, A.F.; Wilson, J.F.; Ferrucci, L.; Farrall, M.; Tuomilehto, J.; Pramstaller, P.P.; Elosua, R.; Soranzo, N.; Sijbrands, E.J.; Altshuler, D.; Loos, R.J.; Shuldiner, A.R.; Gieger, C.; Meneton, P.; Uitterlinden, A.G.; Wareham, N.J.; Gudnason, V.; Rotter, J.I.; Rettig, R.; Uda, M.; Strachan, D.P.; Witteman, J.C.; Hartikainen, A.L.; Beckmann, J.S.; Boerwinkle, E.; Vasan, R.S.; Boehnke, M.; Larson, M.G.; Järvelin, M.R.; Psaty, B.M.; Abecasis, G.R.; Chakravarti, A.; Elliott, P.; van Duijn, C.M.; Newton-Cheh, C.; Levy, D.; Caulfield, M.J.; Johnson, T. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478(7367), 103-109.
[42]
Rame, J.E.; Drazner, M.H.; Post, W.; Peshock, R.; Lima, J.; Cooper, R.S.; Dries, D.L. Corin I555(P568) allele is associated with enhanced cardiac hypertrophic response to increased systemic afterload. Hypertension, 2007, 49(4), 857-864.
[http://dx.doi.org/10.1161/01.HYP.0000258566.95867.9e] [PMID: 17296875]
[43]
Kotlo, K.U.; Hesabi, B.; Danziger, R.S. Implication of microRNAs in atrial natriuretic peptide and nitric oxide signaling in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol., 2011, 301(4), C929-C937.
[http://dx.doi.org/10.1152/ajpcell.00088.2011] [PMID: 21734186]
[44]
Wong, L.L.; Wang, J.; Liew, O.W.; Richards, A.M.; Chen, Y.T. MicroRNA and heart failure. Int. J. Mol. Sci., 2016, 17(4), 502.
[http://dx.doi.org/10.3390/ijms17040502] [PMID: 27058529]
[45]
Hohl, M.; Wagner, M.; Reil, J.C.; Müller, S.A.; Tauchnitz, M.; Zimmer, A.M.; Lehmann, L.H.; Thiel, G.; Böhm, M.; Backs, J.; Maack, C. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest., 2013, 123(3), 1359-1370.
[http://dx.doi.org/10.1172/JCI61084] [PMID: 23434587]
[46]
Hollister, A.S.; Rodeheffer, R.J.; White, F.J.; Potts, J.R.; Imada, T.; Inagami, T. Clearance of atrial natriuretic factor by lung, liver, and kidney in human subjects and the dog. J. Clin. Invest., 1989, 83(2), 623-628.
[http://dx.doi.org/10.1172/JCI113926] [PMID: 2521490]
[47]
Richards, A.M.; Crozier, I.G.; Yandle, T.G.; Espiner, E.A.; Ikram, H.; Nicholls, M.G. Brain natriuretic factor: regional plasma concentrations and correlations with haemodynamic state in cardiac disease. Br. Heart J., 1993, 69(5), 414-417.
[http://dx.doi.org/10.1136/hrt.69.5.414] [PMID: 8390847]
[48]
Jiang, W.; Cai, D.Y.; Pan, C.S.; Qi, Y.F.; Jiang, H.F.; Geng, B.; Tang, C.S. Changes in production and metabolism of brain natriuretic peptide in rats with myocardial necrosis. Eur. J. Pharmacol., 2005, 507(1-3), 153-162.
[http://dx.doi.org/10.1016/j.ejphar.2004.11.023] [PMID: 15659305]
[49]
Vanneste, Y.; Michel, A.; Dimaline, R.; Najdovski, T.; Deschodt-Lanckman, M. Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site. Biochem. J., 1988, 254(2), 531-537.
[http://dx.doi.org/10.1042/bj2540531] [PMID: 2972276]
[50]
Watanabe, Y.; Nakajima, K.; Shimamori, Y.; Fujimoto, Y. Comparison of the hydrolysis of the three types of natriuretic peptides by human kidney neutral endopeptidase 24.11. Biochem. Mol. Med., 1997, 61(1), 47-51.
[http://dx.doi.org/10.1006/bmme.1997.2584] [PMID: 9232196]
[51]
Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2009, 191(191), 341-366.
[http://dx.doi.org/10.1007/978-3-540-68964-5_15] [PMID: 19089336]
[52]
Kenny, A.J.; Bourne, A.; Ingram, J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem. J., 1993, 291(Pt 1), 83-88.
[http://dx.doi.org/10.1042/bj2910083] [PMID: 8097089]
[53]
Dickey, D.M.; Potter, L.R. Human B-type natriuretic peptide is not degraded by meprin A. Biochem. Pharmacol., 2010, 80(7), 1007-1011.
[http://dx.doi.org/10.1016/j.bcp.2010.06.015] [PMID: 20599787]
[54]
Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin degradation: progress and potential. Endocr. Rev., 1998, 19(5), 608-624.
[PMID: 9793760]
[55]
Müller, D.; Schulze, C.; Baumeister, H.; Buck, F.; Richter, D. Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry. Biochemistry, 1992, 31(45), 11138-11143.
[http://dx.doi.org/10.1021/bi00160a026] [PMID: 1445854]
[56]
Smith, M.W.; Espiner, E.A.; Yandle, T.G.; Charles, C.J.; Richards, A.M. Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. J. Endocrinol., 2000, 167(2), 239-246.
[http://dx.doi.org/10.1677/joe.0.1670239] [PMID: 11054637]
[57]
Hashimoto, Y.; Nakao, K.; Hama, N.; Imura, H.; Mori, S.; Yamaguchi, M.; Yasuhara, M.; Hori, R. Clearance mechanisms of atrial and brain natriuretic peptides in rats. Pharm. Res., 1994, 11(1), 60-64.
[http://dx.doi.org/10.1023/A:1018941626731] [PMID: 8140057]
[58]
van Veldhuisen, D.J.; Linssen, G.C.; Jaarsma, T.; van Gilst, W.H.; Hoes, A.W.; Tijssen, J.G.; Paulus, W.J.; Voors, A.A.; Hillege, H.L. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J. Am. Coll. Cardiol., 2013, 61(14), 1498-1506.
[http://dx.doi.org/10.1016/j.jacc.2012.12.044] [PMID: 23500300]
[59]
Yoshimura, M.; Yasue, H.; Okumura, K.; Ogawa, H.; Jougasaki, M.; Mukoyama, M.; Nakao, K.; Imura, H. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation, 1993, 87(2), 464-469.
[http://dx.doi.org/10.1161/01.CIR.87.2.464] [PMID: 8425293]
[60]
Semenov, A.G.; Katrukha, A.G. Analytical issues with natriuretic peptides-has this been overly simplified? EJIFCC, 2016, 27(3), 189-207.
[PMID: 27683533]
[61]
Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; Johnson, M.R.; Kasper, E.K.; Levy, W.C.; Masoudi, F.A.; McBride, P.E.; McMurray, J.J.; Mitchell, J.E.; Peterson, P.N.; Riegel, B.; Sam, F.; Stevenson, L.W.; Tang, W.H.; Tsai, E.J.; Wilkoff, B.L. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation, 2013, 128(16), 1810-1852.
[http://dx.doi.org/10.1161/CIR.0b013e31829e8807] [PMID: 23741057]
[62]
Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med., 2004, 350(7), 655-663.
[http://dx.doi.org/10.1056/NEJMoa031994] [PMID: 14960742]
[63]
Jessup, M.; Abraham, W.T.; Casey, D.E.; Feldman, A.M.; Francis, G.S.; Ganiats, T.G.; Konstam, M.A.; Mancini, D.M.; Rahko, P.S.; Silver, M.A.; Stevenson, L.W.; Yancy, C.W. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation, 2009, 119(14), 1977-2016.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192064] [PMID: 19324967]
[64]
Januzzi, J.L., Jr; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; Lloyd-Jones, D.M.; Brown, D.F.; Foran-Melanson, S.; Sluss, P.M.; Lee-Lewandrowski, E.; Lewandrowski, K.B. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol., 2005, 95(8), 948-954.
[http://dx.doi.org/10.1016/j.amjcard.2004.12.032] [PMID: 15820160]
[65]
McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Böhm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; Jaarsma, T.; Køber, L.; Lip, G.Y.; Maggioni, A.P.; Parkhomenko, A.; Pieske, B.M.; Popescu, B.A.; Rønnevik, P.K.; Rutten, F.H.; Schwitter, J.; Seferovic, P.; Stepinska, J.; Trindade, P.T.; Voors, A.A.; Zannad, F.; Zeiher, A. ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. developed in collaboration with the heart failure association (HFA) of the ESC. Eur. Heart J., 2012, 33(14), 1787-1847.
[http://dx.doi.org/10.1093/eurheartj/ehs104] [PMID: 22611136]
[66]
Stokes, N.R.; Dietz, B.W.; Liang, J.J. Cardiopulmonary laboratory biomarkers in the evaluation of acute dyspnea. Open Access Emerg. Med., 2016, 8, 35-45.
[PMID: 27307771]
[67]
Hunter, I.; Goetze, J.P. Next generation natriuretic peptide measurement. Adv. Clin. Chem., 2012, 58, 45-48.
[http://dx.doi.org/10.1016/B978-0-12-394383-5.00009-6] [PMID: 22950342]
[68]
Sun, Z.; Chen, J.; Yao, H.; Liu, L.; Wang, J.; Zhang, J.; Liu, J.N. Use of Ssp dnaB derived mini-intein as a fusion partner for production of recombinant human brain natriuretic peptide in Escherichia coli. Protein Expr. Purif., 2005, 43(1), 26-32.
[http://dx.doi.org/10.1016/j.pep.2005.05.005] [PMID: 15979896]
[69]
Pan, S.; Chen, H.H.; Dickey, D.M.; Boerrigter, G.; Lee, C.; Kleppe, L.S.; Hall, J.L.; Lerman, A.; Redfield, M.M.; Potter, L.R.; Burnett, J.C., Jr; Simari, R.D. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide. Proc. Natl. Acad. Sci. USA, 2009, 106(27), 11282-11287.
[http://dx.doi.org/10.1073/pnas.0811851106] [PMID: 19541613]
[70]
Dickey, D.M.; Barbieri, K.A.; McGuirk, C.M.; Potter, L.R. Arg13 of B-type natriuretic Peptide reciprocally modulates binding to guanylyl cyclase but not clearance receptors. Mol. Pharmacol., 2010, 78(3), 431-435.
[http://dx.doi.org/10.1124/mol.110.066084] [PMID: 20530652]
[71]
Flora, D.R.; Potter, L.R. Prolonged atrial natriuretic peptide exposure stimulates guanylyl cyclase-a degradation. Endocrinology, 2010, 151(6), 2769-2776.
[http://dx.doi.org/10.1210/en.2009-1239] [PMID: 20382697]
[72]
Volpe, M.; Carnovali, M.; Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin. Sci. (Lond.), 2016, 130(2), 57-77.
[http://dx.doi.org/10.1042/CS20150469] [PMID: 26637405]
[73]
Gopi, V.; Parthasarathy, A.; Umadevi, S.; Vellaichamy, E. Angiotensin-II down-regulates cardiac natriuretic peptide receptor-A mediated anti-hypertrophic signaling in experimental rat hearts. Indian J. Exp. Biol., 2013, 51(1), 48-55.
[PMID: 23441479]
[74]
Song, W.; Wang, H.; Wu, Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene, 2015, 569(1), 1-6.
[http://dx.doi.org/10.1016/j.gene.2015.06.029] [PMID: 26074089]
[75]
Costello-Boerrigter, L.C.; Boerrigter, G.; Burnett, J.C., Jr Revisiting salt and water retention: new diuretics, aquaretics, and natriuretics. Med. Clin. North Am., 2003, 87(2), 475-491.
[http://dx.doi.org/10.1016/S0025-7125(02)00181-5] [PMID: 12693735]
[76]
Stevens, T.L.; Burnett, J.C., Jr; Kinoshita, M.; Matsuda, Y.; Redfield, M.M. A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J. Clin. Invest., 1995, 95(3), 1101-1108.
[http://dx.doi.org/10.1172/JCI117757] [PMID: 7883958]
[77]
Chen, H.H. Heart failure: a state of brain natriuretic peptide deficiency or resistance or both! J. Am. Coll. Cardiol., 2007, 49(10), 1089-1091.
[http://dx.doi.org/10.1016/j.jacc.2006.12.013] [PMID: 17349889]
[78]
Mangiafico, S.; Costello-Boerrigter, L.C.; Andersen, I.A.; Cataliotti, A.; Burnett, J.C., Jr Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur. Heart J., 2013, 34(12), 886-893c.
[http://dx.doi.org/10.1093/eurheartj/ehs262] [PMID: 22942338]
[79]
Fielitz, J.; Dendorfer, A.; Pregla, R.; Ehler, E.; Zurbrügg, H.R.; Bartunek, J.; Hetzer, R.; Regitz-Zagrosek, V. Neutral endopeptidase is activated in cardiomyocytes in human aortic valve stenosis and heart failure. Circulation, 2002, 105(3), 286-289.
[http://dx.doi.org/10.1161/hc0302.103593] [PMID: 11804980]
[80]
Bae, E.H.; Ma, S.K.; Lee, J.; Kim, S.W. Altered regulation of renal nitric oxide and atrial natriuretic peptide systems in angiotensin II-induced hypertension. Regul. Pept., 2011, 170(1-3), 31-37.
[http://dx.doi.org/10.1016/j.regpep.2011.05.005] [PMID: 21616096]
[81]
Potter, L.R.; Abbey-Hosch, S.; Dickey, D.M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev., 2006, 27(1), 47-72.
[http://dx.doi.org/10.1210/er.2005-0014] [PMID: 16291870]
[82]
Gopi, V.; Parthasarathy, A.; Umadevi, S.; Vellaichamy, E. Angiotensin-II down-regulates cardiac natriuretic peptide receptor-A mediated anti-hypertrophic signaling in experimental rat hearts. Indian J. Exp. Biol., 2013, 51(1), 48-55.
[PMID: 23441479]
[83]
Matsukawa, T.; Miyamoto, T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(3), R624-R629.
[http://dx.doi.org/10.1152/ajpregu.00324.2010] [PMID: 21123762]
[84]
Veldkamp, P.J.; Carmines, P.K.; Inscho, E.W.; Navar, L.G. Direct evaluation of the microvascular actions of ANP in juxtamedullary nephrons. Am. J. Physiol., 1988, 254(3 Pt 2), F440-F444.
[PMID: 2964792]
[85]
Brenner, B.M.; Ballermann, B.J.; Gunning, M.E.; Zeidel, M.L. Diverse biological actions of atrial natriuretic peptide. Physiol. Rev., 1990, 70(3), 665-699.
[http://dx.doi.org/10.1152/physrev.1990.70.3.665] [PMID: 2141944]
[86]
Lanese, D.M.; Yuan, B.H.; Falk, S.A.; Conger, J.D. Effects of atriopeptin III on isolated rat afferent and efferent arterioles. Am. J. Physiol., 1991, 261(6 Pt 2), F1102-F1109.
[PMID: 1661082]
[87]
Chen, W.; Gassner, B.; Börner, S.; Nikolaev, V.O.; Schlegel, N.; Waschke, J.; Steinbronn, N.; Strasser, R.; Kuhn, M. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc. Res., 2012, 93(1), 141-151.
[http://dx.doi.org/10.1093/cvr/cvr279] [PMID: 22025581]
[88]
Elesgaray, R.; Caniffi, C.; Ierace, D.R.; Jaime, M.F.; Fellet, A.; Arranz, C.; Costa, M.A. Signaling cascade that mediates endothelial nitric oxide synthase activation induced by atrial natriuretic peptide. Regul. Pept., 2008, 151(1-3), 130-134.
[http://dx.doi.org/10.1016/j.regpep.2008.05.008] [PMID: 18586055]
[89]
Costa, M.A.; Elesgaray, R.; Balaszczuk, A.M.; Arranz, C. Role of NPR-C natriuretic receptor in nitric oxide system activation induced by atrial natriuretic peptide. Regul. Pept., 2006, 135(1-2), 63-68.
[http://dx.doi.org/10.1016/j.regpep.2006.04.002] [PMID: 16712979]
[90]
Hamad, A.M.; Clayton, A.; Islam, B.; Knox, A.J. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(5), L973-L983.
[http://dx.doi.org/10.1152/ajplung.00033.2003] [PMID: 14551038]
[91]
Klinger, J.R.; Warburton, R.R.; Pietras, L.A.; Smithies, O.; Swift, R.; Hill, N.S. Genetic disruption of atrial natriuretic peptide causes pulmonary hypertension in normoxic and hypoxic mice. Am. J. Physiol., 1999, 276(5), L868-L874.
[PMID: 10330043]
[92]
Levin, E.R.; Gardner, D.G.; Samson, W.K. Natriuretic peptides. N. Engl. J. Med., 1998, 339(5), 321-328.
[http://dx.doi.org/10.1056/NEJM199807303390507] [PMID: 9682046]
[93]
Floras, J.S. Inhibitory effect of atrial natriuretic factor on sympathetic ganglionic neurotransmission in humans. Am. J. Physiol., 1995, 269(2 Pt 2), R406-R412.
[PMID: 7653663]
[94]
Kaupp, U.B.; Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev., 2002, 82(3), 769-824.
[http://dx.doi.org/10.1152/physrev.00008.2002] [PMID: 12087135]
[95]
Newton-Cheh, C.; Larson, M.G.; Vasan, R.S.; Levy, D.; Bloch, K.D.; Surti, A.; Guiducci, C.; Kathiresan, S.; Benjamin, E.J.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Blankenberg, S.; Kee, F.; Nilsson, P.; Yin, X.; Peltonen, L.; Vartiainen, E.; Salomaa, V.; Hirschhorn, J.N.; Melander, O.; Wang, T.J. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet., 2009, 41(3), 348-353.
[http://dx.doi.org/10.1038/ng.328] [PMID: 19219041]
[96]
Franco, F.; Dubois, S.K.; Peshock, R.M.; Shohet, R.V. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am. J. Physiol., 1998, 274(2), H679-H683.
[PMID: 9486274]
[97]
Somanna, N.K.; Yariswamy, M.; Garagliano, J.M.; Siebenlist, U.; Mummidi, S.; Valente, A.J.; Chandrasekar, B. Aldosterone-induced cardiomyocyte growth, and fibroblast migration and proliferation are mediated by TRAF3IP2. Cell. Signal., 2015, 27(10), 1928-1938.
[http://dx.doi.org/10.1016/j.cellsig.2015.07.001] [PMID: 26148936]
[98]
Nojiri, T.; Hosoda, H.; Tokudome, T.; Miura, K.; Ishikane, S.; Otani, K.; Kishimoto, I.; Shintani, Y.; Inoue, M.; Kimura, T.; Sawabata, N.; Minami, M.; Nakagiri, T.; Funaki, S.; Takeuchi, Y.; Maeda, H.; Kidoya, H.; Kiyonari, H.; Shioi, G.; Arai, Y.; Hasegawa, T.; Takakura, N.; Hori, M.; Ohno, Y.; Miyazato, M.; Mochizuki, N.; Okumura, M.; Kangawa, K. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc. Natl. Acad. Sci. USA, 2015, 112(13), 4086-4091.
[http://dx.doi.org/10.1073/pnas.1417273112] [PMID: 25775533]
[99]
Rubattu, S.; Bigatti, G.; Evangelista, A.; Lanzani, C.; Stanzione, R.; Zagato, L.; Manunta, P.; Marchitti, S.; Venturelli, V.; Bianchi, G.; Volpe, M.; Stella, P. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J. Am. Coll. Cardiol., 2006, 48(3), 499-505.
[http://dx.doi.org/10.1016/j.jacc.2005.12.081] [PMID: 16875975]
[100]
Scotland, R.S.; Cohen, M.; Foster, P.; Lovell, M.; Mathur, A.; Ahluwalia, A.; Hobbs, A.J. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14452-14457.
[http://dx.doi.org/10.1073/pnas.0504961102] [PMID: 16179391]
[101]
Sengenes, C.; Bouloumie, A.; Hauner, H.; Berlan, M.; Busse, R.; Lafontan, M.; Galitzky, J. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J. Biol. Chem., 2003, 278(49), 48617-48626.
[http://dx.doi.org/10.1074/jbc.M303713200] [PMID: 12970365]
[102]
Bordicchia, M.; Liu, D.; Amri, E.Z.; Ailhaud, G.; Dessì-Fulgheri, P.; Zhang, C.; Takahashi, N.; Sarzani, R.; Collins, S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest., 2012, 122(3), 1022-1036.
[http://dx.doi.org/10.1172/JCI59701] [PMID: 22307324]
[103]
Cataliotti, A.; Tonne, J.M.; Bellavia, D.; Martin, F.L.; Oehler, E.A.; Harders, G.E.; Campbell, J.M.; Peng, K.W.; Russell, S.J.; Malatino, L.S.; Burnett, J.C., Jr; Ikeda, Y. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation, 2011, 123(12), 1297-1305.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.981720] [PMID: 21403100]
[104]
Glezeva, N.; Collier, P.; Voon, V.; Ledwidge, M.; McDonald, K.; Watson, C.; Baugh, J. Attenuation of monocyte chemotaxis--a novel anti-inflammatory mechanism of action for the cardio-protective hormone B-type natriuretic peptide. J. Cardiovasc. Transl. Res., 2013, 6(4), 545-557.
[http://dx.doi.org/10.1007/s12265-013-9456-1] [PMID: 23625718]
[105]
Das, B.B.; Raj, S.; Solinger, R. Natriuretic peptides in cardiovascular diseases of fetus, infants and children. Cardiovasc. Hematol. Agents Med. Chem., 2009, 7(1), 43-51.
[http://dx.doi.org/10.2174/187152509787047667] [PMID: 19149543]
[106]
Becker, J.R.; Chatterjee, S.; Robinson, T.Y.; Bennett, J.S.; Panáková, D.; Galindo, C.L.; Zhong, L.; Shin, J.T.; Coy, S.M.; Kelly, A.E.; Roden, D.M.; Lim, C.C.; MacRae, C.A. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development, 2014, 141(2), 335-345.
[http://dx.doi.org/10.1242/dev.100370] [PMID: 24353062]
[107]
Kuhn, M.; Völker, K.; Schwarz, K.; Carbajo-Lozoya, J.; Flögel, U.; Jacoby, C.; Stypmann, J.; van Eickels, M.; Gambaryan, S.; Hartmann, M.; Werner, M.; Wieland, T.; Schrader, J.; Baba, H.A. The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice. J. Clin. Invest., 2009, 119(7), 2019-2030.
[http://dx.doi.org/10.1172/JCI37430] [PMID: 19487812]
[108]
Bielmann, C.; Rignault-Clerc, S.; Liaudet, L.; Li, F.; Kunieda, T.; Sogawa, C.; Zehnder, T.; Waeber, B.; Feihl, F.; Rosenblatt-Velin, N. Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Res. Cardiol., 2015, 110(1), 455.
[http://dx.doi.org/10.1007/s00395-014-0455-4] [PMID: 25449896]
[109]
Sangaralingham, S.J.; Huntley, B.K.; Martin, F.L.; McKie, P.M.; Bellavia, D.; Ichiki, T.; Harders, G.E.; Chen, H.H.; Burnett, J.C., Jr The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension, 2011, 57(2), 201-207.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.160796] [PMID: 21189408]
[110]
Del Ry, S.; Cabiati, M.; Vozzi, F.; Battolla, B.; Caselli, C.; Forini, F.; Segnani, C.; Prescimone, T.; Giannessi, D.; Mattii, L. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides, 2011, 32(8), 1713-1718.
[http://dx.doi.org/10.1016/j.peptides.2011.06.014] [PMID: 21723350]
[111]
Dickey, D.M.; Dries, D.L.; Margulies, K.B.; Potter, L.R. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J. Mol. Cell. Cardiol., 2012, 52(3), 727-732.
[http://dx.doi.org/10.1016/j.yjmcc.2011.11.007] [PMID: 22133375]
[112]
Creemers, E.E.; Pinto, Y.M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc. Res., 2011, 89(2), 265-272.
[http://dx.doi.org/10.1093/cvr/cvq308] [PMID: 20880837]
[113]
Yandle, T.G.; Richards, A.M. B-type Natriuretic Peptide circulating forms: Analytical and bioactivity issues. Clin. Chim. Acta, 2015, 448, 195-205.
[http://dx.doi.org/10.1016/j.cca.2015.07.004] [PMID: 26160054]
[114]
Filippatos, G.; Farmakis, D.; Parissis, J.; Lekakis, J. Drug therapy for patients with systolic heart failure after the PARADIGM-HF trial: in need of a new paradigm of LCZ696 implementation in clinical practice. BMC Med., 2015, 13, 35.
[http://dx.doi.org/10.1186/s12916-015-0272-0] [PMID: 25849438]
[115]
Partovian, C.; Li, S.X.; Xu, X.; Lin, H.; Strait, K.M.; Hwa, J.; Krumholz, H.M. Patterns of change in nesiritide use in patients with heart failure: how hospitals react to new information. JACC Heart Fail., 2013, 1(4), 318-324.
[http://dx.doi.org/10.1016/j.jchf.2013.04.005] [PMID: 24621935]
[116]
Kelly, J.P.; Mentz, R.J.; Hasselblad, V.; Ezekowitz, J.A.; Armstrong, P.W.; Zannad, F.; Felker, G.M.; Califf, R.M.; O’Connor, C.M.; Hernandez, A.F. Worsening heart failure during hospitalization for acute heart failure: Insights from the Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure (ASCEND-HF). Am. Heart J., 2015, 170(2), 298-305.
[http://dx.doi.org/10.1016/j.ahj.2015.04.007] [PMID: 26299227]
[117]
Gottlieb, S.S.; Stebbins, A.; Voors, A.A.; Hasselblad, V.; Ezekowitz, J.A.; Califf, R.M.; O’Connor, C.M.; Starling, R.C.; Hernandez, A.F. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J. Am. Coll. Cardiol., 2013, 62(13), 1177-1183.
[http://dx.doi.org/10.1016/j.jacc.2013.04.073] [PMID: 23747790]
[118]
Lyu, T.; Zhao, Y.; Zhang, T.; Zhou, W.; Yang, F.; Ge, H.; Ding, S.; Pu, J.; He, B. Natriuretic peptides as an adjunctive treatment for acute myocardial infarction: insights from the meta-analysis of 1,389 patients from 20 trials. Int. Heart J., 2014, 55(1), 8-16.
[http://dx.doi.org/10.1536/ihj.13-109] [PMID: 24463927]
[119]
Kawase, Y.; Kadota, K.; Tada, T.; Hata, R.; Iwasaki, K.; Maruo, T.; Katoh, H.; Mitsudo, K. Predictors of worsening renal function in patients with acute decompensated heart failure treated by low-Dose carperitide. Circ. J., 2016, 80(2), 418-425.
[http://dx.doi.org/10.1253/circj.CJ-15-0928] [PMID: 26667591]
[120]
Packer, M.; Holcomb, R.; Abraham, W.T.; Anker, S.; Dickstein, K.; Filippatos, G.; Krum, H.; Maggioni, A.P.; McMurray, J.J.V.; Mebazaa, A.; O’Connor, C.; Peacock, F.; Ponikowski, P.; Ruschitzka, F.; van Veldhuisen, D.J.; Holzmeister, J. TRUE-AHF Investigators and Committees. Rationale for and design of the TRUE-AHF trial: the effects of ularitide on the short-term clinical course and long-term mortality of patients with acute heart failure. Eur. J. Heart Fail., 2017, 19(5), 673-681.
[http://dx.doi.org/10.1002/ejhf.698] [PMID: 27862700]
[121]
Zakeri, R.; Burnett, J.C. Designer natriuretic peptides: a vision for the future of heart failure therapeutics. Can. J. Physiol. Pharmacol., 2011, 89(8), 593-601.
[http://dx.doi.org/10.1139/y11-048] [PMID: 21815778]
[122]
Dickey, D.M.; Potter, L.R. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J. Mol. Cell. Cardiol., 2011, 51(1), 67-71.
[http://dx.doi.org/10.1016/j.yjmcc.2011.03.013] [PMID: 21459096]
[123]
Ichiki, T.; Schirger, J.A.; Huntley, B.K.; Brozovich, F.V.; Maleszewski, J.J.; Sandberg, S.M.; Sangaralingham, S.J.; Park, S.J.; Burnett, J.C., Jr Cardiac fibrosis in end-stage human heart failure and the cardiac natriuretic peptide guanylyl cyclase system: regulation and therapeutic implications. J. Mol. Cell. Cardiol., 2014, 75, 199-205.
[http://dx.doi.org/10.1016/j.yjmcc.2014.08.001] [PMID: 25117468]
[124]
McKie, P.M.; Cataliotti, A.; Ichiki, T.; Sangaralingham, S.J.; Chen, H.H.; Burnett, J.C., Jr M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J. Am. Heart Assoc., 2014, 3(1)e000206
[http://dx.doi.org/10.1161/JAHA.113.000206] [PMID: 24385449]
[125]
Chen, H.H.; Neutel, J.M.; Smith, D.H.; Heublein, D.; Burnett, J.C. A first-in-human trial of a novel designer natriuretic peptide ZD100 in human hypertension. J. Am. Soc. Hypertens., 2016, 10(4)(Suppl.)e23
[http://dx.doi.org/10.1016/j.jash.2016.03.051]
[126]
von Lueder, T.G.; Sangaralingham, S.J.; Wang, B.H.; Kompa, A.R.; Atar, D.; Burnett, J.C., Jr; Krum, H. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail, 2013, 6(3), 594-605.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000289] [PMID: 23694773]
[127]
Bayés-Genís, A.; Barallat, J.; Galán, A.; de Antonio, M.; Domingo, M.; Zamora, E.; Urrutia, A.; Lupón, J. Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J. Am. Coll. Cardiol., 2015, 65(7), 657-665.
[http://dx.doi.org/10.1016/j.jacc.2014.11.048] [PMID: 25677426]
[128]
Dickey, D.M.; Potter, L.R. Human B-type natriuretic peptide is not degraded by meprin A. Biochem. Pharmacol., 2010, 80(7), 1007-1011.
[http://dx.doi.org/10.1016/j.bcp.2010.06.015] [PMID: 20599787]
[129]
Mills, J.; Vardeny, O. The role of neprilysin inhibitors in cardiovascular disease. Curr. Heart Fail. Rep., 2015, 12(6), 389-394.
[http://dx.doi.org/10.1007/s11897-015-0270-8] [PMID: 26466607]
[130]
McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; Zile, M.R. PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med., 2014, 371(11), 993-1004.
[http://dx.doi.org/10.1056/NEJMoa1409077] [PMID: 25176015]
[131]
Vodovar, N.; Paquet, C.; Mebazaa, A.; Launay, J.M.; Hugon, J.; Cohen-Solal, A. Neprilysin, cardiovascular, and Alzheimer’s diseases: the therapeutic split? Eur. Heart J., 2015, 36(15), 902-905.
[http://dx.doi.org/10.1093/eurheartj/ehv015] [PMID: 25636748]
[132]
von Lueder, T.G.; Wang, B.H.; Kompa, A.R.; Huang, L.; Webb, R.; Jordaan, P.; Atar, D.; Krum, H. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Heart Fail, 2015, 8(1), 71-78.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001785] [PMID: 25362207]
[133]
Malek, V.; Gaikwad, A.B. Neprilysin inhibitors: A new hope to halt the diabetic cardiovascular and renal complications? Biomed. Pharmacother., 2017, 90, 752-759.
[http://dx.doi.org/10.1016/j.biopha.2017.04.024] [PMID: 28419972]
[134]
Braunwald, E. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J. Am. Coll. Cardiol., 2015, 65(10), 1029-1041.
[http://dx.doi.org/10.1016/j.jacc.2015.01.033] [PMID: 25766951]
[135]
Desai, A.S.; McMurray, J.J.; Packer, M.; Swedberg, K.; Rouleau, J.L.; Chen, F.; Gong, J.; Rizkala, A.R.; Brahimi, A.; Claggett, B.; Finn, P.V.; Hartley, L.H.; Liu, J.; Lefkowitz, M.; Shi, V.; Zile, M.R.; Solomon, S.D. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur. Heart J., 2015, 36(30), 1990-1997.
[http://dx.doi.org/10.1093/eurheartj/ehv186] [PMID: 26022006]
[136]
Solomon, S.D.; Zile, M.; Pieske, B.; Voors, A.; Shah, A.; Kraigher-Krainer, E.; Shi, V.; Bransford, T.; Takeuchi, M.; Gong, J.; Lefkowitz, M.; Packer, M.; McMurray, J.J. Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet, 2012, 380(9851), 1387-1395.
[http://dx.doi.org/10.1016/S0140-6736(12)61227-6] [PMID: 22932717]
[137]
Bavishi, C.; Messerli, F.H.; Kadosh, B.; Ruilope, L.M.; Kario, K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur. Heart J., 2015, 36(30), 1967-1973.
[http://dx.doi.org/10.1093/eurheartj/ehv142] [PMID: 25898846]
[138]
Hua, Y.; Wang, I.; Liu, B.; Kelly, D.J.; Reid, C.; Liew, D.; Zhou, Y.; Wang, B.H. Angiotensin receptor neprilysin inhibitor LCZ696: pharmacology, pharmacokinetics and clinical development. Future Cardiol., 2017, 13(2), 103-115.
[http://dx.doi.org/10.2217/fca-2016-0057] [PMID: 27892684]
[139]
Suematsu, Y.; Miura, S.; Goto, M.; Matsuo, Y.; Arimura, T.; Kuwano, T.; Imaizumi, S.; Iwata, A.; Yahiro, E.; Saku, K. LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. Eur. J. Heart Fail., 2016, 18(4), 386-393.
[http://dx.doi.org/10.1002/ejhf.474] [PMID: 26749570]
[140]
Dec, G.W. LCZ696 (sacubitril/valsartan): can we predict who will benefit? J. Am. Coll. Cardiol., 2015, 66(19), 2072-2074.
[http://dx.doi.org/10.1016/j.jacc.2015.08.877] [PMID: 26541916]
[141]
Solomon, S.D.; Claggett, B.; Desai, A.S.; Packer, M.; Zile, M.; Swedberg, K.; Rouleau, J.L.; Shi, V.C.; Starling, R.C.; Kozan, Ö.; Dukat, A.; Lefkowitz, M.P.; McMurray, J.J. The angiotensin receptor neprilysin inhibitor LCZ696 is effective across the spectrum of ejection fraction in heart failure with reduced ejection fraction. Circ Heart Fail, 2016, 9(3)e002744
[PMID: 26915374]
[142]
Rosenblatt-Velin, N.; Badoux, S.; Liaudet, L. Pharmacological therapy in the heart as an alternative to cellular therapy: a place for the brain natriuretic peptide? Stem Cells Int., 2016. 20165961342
[http://dx.doi.org/10.1155/2016/5961342] [PMID: 26880973]
[143]
Gommans, D.H.; Bayés-Genís, A.; van Kimmenade, R.R. Putting together the pieces of the natriuretic peptide puzzle. JACC Heart Fail., 2016, 4(8), 670-673.
[http://dx.doi.org/10.1016/j.jchf.2016.04.009] [PMID: 27395344]
[144]
Ichiki, T.; Huntley, B.K.; Burnett, J.C., Jr BNP molecular forms and processing by the cardiac serine protease corin. Adv. Clin. Chem., 2013, 61, 1-31.
[http://dx.doi.org/10.1016/B978-0-12-407680-8.00001-4] [PMID: 24015598]
[145]
Huntley, B.K.; Sandberg, S.M.; Heublein, D.M.; Sangaralingham, S.J.; Burnett, J.C., Jr; Ichiki, T. Pro-B-type natriuretic peptide-1-108 processing and degradation in human heart failure. Circ Heart Fail, 2015, 8(1), 89-97.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001174] [PMID: 25339504]
[146]
Ichiki, T.; Huntley, B.K.; Sangaralingham, S.J.; Burnett, J.C., Jr Pro-atrial natriuretic peptide: A novel guanylyl cyclase-A receptor activator that goes beyond atrial and B-type natriuretic peptides. JACC Heart Fail., 2015, 3(9), 715-723.
[http://dx.doi.org/10.1016/j.jchf.2015.03.015] [PMID: 26362447]
[147]
Jaffe, A.S.; Apple, F.S.; Mebazaa, A.; Vodovar, N. Unraveling N-terminal pro-B-type natriuretic peptide: another piece to a very complex puzzle in heart failure patients. Clin. Chem., 2015, 61(8), 1016-1018.
[http://dx.doi.org/10.1373/clinchem.2015.243626] [PMID: 26078443]
[148]
Ruilope, L.M.; Dukat, A.; Böhm, M.; Lacourcière, Y.; Gong, J.; Lefkowitz, M.P. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet, 2010, 375(9722), 1255-1266.
[http://dx.doi.org/10.1016/S0140-6736(09)61966-8] [PMID: 20236700]
[149]
Packer, M.; McMurray, J.J.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; Zile, M.; Andersen, K.; Arango, J.L.; Arnold, J.M.; Bělohlávek, J.; Böhm, M.; Boytsov, S.; Burgess, L.J.; Cabrera, W.; Calvo, C.; Chen, C.H.; Dukat, A.; Duarte, Y.C.; Erglis, A.; Fu, M.; Gomez, E.; Gonzàlez-Medina, A.; Hagège, A.A.; Huang, J.; Katova, T.; Kiatchoosakun, S.; Kim, K.S.; Kozan, Ö.; Llamas, E.B.; Martinez, F.; Merkely, B.; Mendoza, I.; Mosterd, A.; Negrusz-Kawecka, M.; Peuhkurinen, K.; Ramires, F.J.; Refsgaard, J.; Rosenthal, A.; Senni, M.; Sibulo, A.S., Jr; Silva-Cardoso, J.; Squire, I.B.; Starling, R.C.; Teerlink, J.R.; Vanhaecke, J.; Vinereanu, D.; Wong, R.C. PARADIGM-HF Investigators and Coordinators. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation, 2015, 131(1), 54-61.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013748] [PMID: 25403646]
[150]
Hopper, I.; Bodey, F.; Krum, H. Neprilysin inhibitors preserve renal function in heart failure: A meta-analysis of randomised controlled trials. Int. J. Cardiol., 2015, 179, 329-330.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy