Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

General Research Article

New Insights Towards 1,4-Benzodiazepines from Curcumin. Design, Synthesis and Antimicrobial Activities

Author(s): Othman Hamed*, Oswa Fares, Shaima Taleeb, Ghaleb Adwan, Haythem Saadeh, Shehdeh Jodeh and Manuel Algarra

Volume 16, Issue 8, 2020

Page: [1112 - 1123] Pages: 12

DOI: 10.2174/1573406415666190826160251

Price: $65

Abstract

Background: Curcumin is a safe, versatile natural product with unlimited number of biological activities and a precursor for various heterocyclic compounds.

Objective: The present study was aimed to the development of a curcumin based antimicrobial reagent with high potency against gram-positive and gram-negative bacteria.

Methods: Herein we report a simple and convenient one step method for synthesizing a series of 1,4-benzodiazepines via condensation cyclization reaction between curcumin and various 1,2- phenylenediamine in refluxed ethanol.

Results: A series of new 1,4-benzodiazepins were synthesized and their structures were supported by FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. Synthesized 1,4-benzodiazepins were evaluated for their in vitro antimicrobial activity against gram positive (S. aureus and S. epidermidis) and gram negative (E. coli and P. aeruginosa) bacteria. They exhibited low to high potency against the tested organisms. In particular, dichlorinated 1,4-benzodiazepine 9 exhibited a remarkable potency against the gram-positive bacteria S. aureus (MIC: 3.125 μg mL-1, MBC: 12 μg mL-1). It showed a higher potency than most of the tested reference drugs. Compound 9 showed the medium activity against E. coli. Genotoxic study revealed that, benzodiazepines 9 attacked the DNA of E. coli strains and damaged it. The potency of compound 9, could be attributed to the multiple chlorine atoms present on the aromatic ring.

Conclusion: Some of the synthesized curcumin based benzodiazepines showed excellent potency against gram positive bacteria. These benzodiazepines could be a great candidate as a future antimicrobial agent.

Keywords: Disc diffusion, diazepine, curcumin, genotoxicity, antimicrobial, biological activities.

Graphical Abstract

[1]
Zhang, Z.; Du, X.; Wang, F. Biological activities of procyanidins from the bark of Pinus caribaea Morelet. Nat. Prod. Res., 2009, 23(8), 696-703.
[http://dx.doi.org/10.1080/14786410802242984] [PMID: 19418352]
[2]
Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, J. Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae). Nat. Prod. Res., 2010, 24(20), 1915-1926.
[http://dx.doi.org/10.1080/14786419.2010.488631] [PMID: 21108118]
[3]
Park, J.B. Synthesis, biological activities and bioavailability of moschamine, a safflomide-type phenylpropenoic acid amide found in Centaurea cyanus. Nat. Prod. Res., 2012, 26(16), 1465-1472.
[http://dx.doi.org/10.1080/14786419.2011.562207] [PMID: 21978225]
[4]
Tatsuta, K.; Hosokawa, S. Total synthesis of selected bioactive natural products: illustration of strategy and design. Chem. Rev., 2005, 105(12), 4707-4729.
[http://dx.doi.org/10.1021/cr040630+]
[5]
Bisson, J.; McAlpine, J.B.; Friesen, J.B.; Chen, S-N.; Graham, J.; Pauli, G.F. Can invalid bioactives undermine natural product-based drug discovery. J. Med. Chem., 2016, 59(5), 1671-1690.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01009] [PMID: 26505758]
[6]
Zhang, Z.; Du, X.; Wang, F. Biological activities of procyanidins from the bark of Pinus caribaea Morelet. Nat. Prod. Res., 2009, 23(8), 696-703.
[http://dx.doi.org/10.1080/14786410802242984] [PMID: 19418352]
[7]
Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, J. Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae). Nat. Prod. Res., 2010, 24(20), 1915-1926.
[http://dx.doi.org/10.1080/14786419.2010.488631] [PMID: 21108118]
[8]
Park, J.B. Synthesis, biological activities and bioavailability of moschamine, a safflomide-type phenylpropenoic acid amide found in Centaurea cyanus. Nat. Prod. Res., 2012, 26(16), 1465-1472.
[http://dx.doi.org/10.1080/14786419.2011.562207] [PMID: 21978225]
[9]
Aljerf, L. Méthode de synthèse économique et environnementale de la cardolite alkylée. Am. J. Innovat. Res. Appl. Sci., 2016, 3(1), 415-422.
[10]
Prusty, B.K.; Das, B.C. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int. J. Cancer, 2005, 113(6), 951-960.
[http://dx.doi.org/10.1002/ijc.20668] [PMID: 15514944]
[11]
Hoan, D.Q. Synthesis and biological activity evaluation of some derivatives synthesized from curcumin and curcumin analog. Hue Univ. J. Sci. Nat. Sci., 2017, 126(1B), 127-133.
[http://dx.doi.org/10.26459/hueuni-jns.v126i1B.4139]
[12]
Zhang, W.; Bai, H.; Han, L.; Zhang, H.; Xu, B.; Cui, J.; Wang, X.; Ge, Z.; Li, R. Synthesis and biological evaluation of curcumin derivatives modified with α-amino boronic acid as proteasome inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(14), 2459-2464.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.004] [PMID: 29886021]
[13]
Sharma, O.P. Antioxidant activity of curcumin and related compounds. Biochem. Pharmacol., 1976, 25(15), 1811-1812.
[http://dx.doi.org/10.1016/0006-2952(76)90421-4] [PMID: 942483]
[14]
Frautschy, S.A.; Hu, W.; Kim, P.; Miller, S.A.; Chu, T.; Harris-White, M.E.; Cole, G.M. Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging, 2001, 22(6), 993-1005.
[http://dx.doi.org/10.1016/S0197-4580(01)00300-1] [PMID: 11755008]
[15]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr., 2015, 34(6), 1101-1108.
[http://dx.doi.org/10.1016/j.clnu.2014.12.019] [PMID: 25618800]
[16]
Sakima, V.T.; Barbugli, P.A.; Cerri, P.S.; Chorilli, M.; Carmello, J.C.; Pavarina, A.C.; Mima, E.G.O. Antimicrobial photodynamic therapy mediated by curcumin-loaded polymeric nanoparticles in a murine model of oral candidiasis. Molecules, 2018, 23(8), 2075.
[http://dx.doi.org/10.3390/molecules23082075] [PMID: 30126245]
[17]
Neckers, L.; Trepel, J.; Lee, S.; Chung, E-J.; Lee, M-J.; Jung, Y-J.; Marcu, M.G. Curcumin is an inhibitor of p300 histone acetyltransferase. Med. Chem., 2006, 2, 169-174.
[http://dx.doi.org/10.2174/157340606776056133]
[18]
Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 2005, 223(2), 181-190.
[http://dx.doi.org/10.1016/j.canlet.2004.09.041] [PMID: 15896452]
[19]
Elias, G.; Jacob, P.J.; Hareeshbabu, E.; Mathew, V.B.; Krishnan, B.; Krishnakumar, K. Curcumin: Transforming the spice to a wonder drug. Int. J. Pharm. Sci. Res., 2015, 6, 2671-2680.
[20]
Hu, S.; Maiti, P.; Ma, Q.; Zuo, X.; Jones, M.R.; Cole, G.M.; Frautschy, S.A. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother., 2015, 15(6), 629-637.
[http://dx.doi.org/10.1586/14737175.2015.1044981] [PMID: 26035622]
[21]
Bala, K.; Tripathy, B.C.; Sharma, D. Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology, 2006, 7(2), 81-89.
[http://dx.doi.org/10.1007/s10522-006-6495-x] [PMID: 16802111]
[22]
Calabrese, V.; Butterfield, D.A.; Stella, A.M. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital. J. Biochem., 2003, 52(4), 177-181.
[PMID: 15141484]
[23]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J. Tradit. Complement. Med., 2016, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[24]
Ou, J.L.; Mizushina, Y.; Wang, S.Y.; Chuang, D.Y.; Nadar, M.; Hsu, W.L. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J., 2013, 280(22), 5829-5840.
[http://dx.doi.org/10.1111/febs.12503] [PMID: 24034558]
[25]
Yang, H.; Du, Z.; Wang, W.; Song, M.; Sanidad, K.; Sukamtoh, E.; Zheng, J.; Tian, L.; Xiao, H.; Liu, Z.; Zhang, G. Structure-activity relationship of curcumin: role of the methoxy group in anti-inflammatory and anticolitis effects of curcumin. J. Agric. Food Chem., 2017, 65(22), 4509-4515.
[http://dx.doi.org/10.1021/acs.jafc.7b01792] [PMID: 28513174]
[26]
Schulz, O. The biological activity of curcumin; Wellness Foods Europe, 2008, pp. 10-13.
[27]
Hamed, O.; Mehdawi, N.; Abu Taha, A.; M; Hamed, E.; A; Al-Nuri, M.; S; Hussein, A. Synthesis and antibacterial activity of novel curcumin derivatives containing heterocyclic moiety. Iran. J. Pharm. Res., 2013, 12(1), 47-56.
[PMID: 24250571]
[28]
Vecchi Brumatti, L.; Marcuzzi, A.; Tricarico, P.M.; Zanin, V.; Girardelli, M.; Bianco, A.M. Curcumin and inflammatory bowel disease: potential and limits of innovative treatments. Molecules, 2014, 19(12), 21127-21153.
[http://dx.doi.org/10.3390/molecules191221127] [PMID: 25521115]
[29]
aWang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; Yang, Q.; Chen, C. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 2018, 23(7), 1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
bJi, H.K.; Gorkem, K.; Subash, C.G. Natural products for the prevention and treatment of chronic inflammatory diseases: integrating traditional medicine into modern chronic diseases care. Evid. Based Complement. Alternat. Med., 2018, 20189837863
[30]
Chen, J.; Qin, X.; Zhong, S.; Chen, S.; Su, W.; Liu, Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules, 2018, 23(5), 1179.
[http://dx.doi.org/10.3390/molecules23051179] [PMID: 29762477]
[31]
Lin, A.H.; Murray, R.W.; Vidmar, T.J.; Marotti, K.R. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob. Agents Chemother., 1997, 41(10), 2127-2131.
[http://dx.doi.org/10.1128/AAC.41.10.2127] [PMID: 9333036]
[32]
Nieto, C.I. Andrade. A.; Sanz, D.; Claramunt M.; Torralba, M.C.; Rosario Torres, M.R; Alkorta, I.; Elguero, J. Curcumin Related 1,4-Diazepines: Regioselective Synthesis, Structure Analysis, Tautomerism, NMR Spectroscopy, X-ray Crystallography, Density Functional Theory and GIAO Calculations. ChemistrySelect, 2017, 2, 23732-23738.
[33]
Choudhary, A.; Naughton, L.M.; Montánchez, I.; Dobson, A.D.W.; Rai, D.K. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs, 2017, 15(9), 272.
[http://dx.doi.org/10.3390/md15090272] [PMID: 28846659]
[34]
Ohtsu, H.; Xiao, Z.; Ishida, J.; Nagai, M.; Wang, H.K.; Itokawa, H.; Su, C.Y.; Shih, C.; Chiang, T.; Chang, E.; Lee, Y.; Tsai, M.Y.; Chang, C.; Lee, K.H. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J. Med. Chem., 2002, 45(23), 5037-5042.
[http://dx.doi.org/10.1021/jm020200g] [PMID: 12408714]
[35]
Liu, Z.; Xie, Z.; Jones, W.; Pavlovicz, R.E.; Liu, S.; Yu, J.; Li, P.K.; Lin, J.; Fuchs, J.R.; Marcucci, G.; Li, C.; Chan, K.K. Curcumin is a potent DNA hypomethylation agent. Bioorg. Med. Chem. Lett., 2009, 19(3), 706-709.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.041] [PMID: 19112019]
[36]
Perez, C.; Pauli, M.; Bazevque, P. An Antibiotic Assay by The Agar Well Diffusion Method. Acta Biologiae et Medicinae Experimentalis, 1990, 15, 113-115.
[37]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115(10), 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022] [PMID: 27017551]
[38]
Jarrott, B.; Summers, R.J.; Culvenor, A.J.; Louis, W.J. Characterization of alpha-adrenoceptors in rat and guinea pig tissues using radiolabeled agonists and antagonists. Circ. Res., 1980, 46(6 Pt 2)(Suppl. I), I15-I20.
[PMID: 6247087]
[39]
De Jong, A.P.; Soudijn, W. Relationships between structure and alpha-adrenergic receptor affinity of clonidine and some related cyclic amidines. Eur. J. Pharmacol., 1981, 69(2), 175-188.
[http://dx.doi.org/10.1016/0014-2999(81)90412-X] [PMID: 6258944]
[40]
Lalrotluanga, S.S.; Kumar, S.; Gurusubramanian, G. Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage in mosquito larvae treated with plant extracts. Science Vision, 2011, 11(3), 155-158.
[41]
Atienzar, F.A.; Venier, P.; Jha, A.N.; Depledge, M.H. Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat. Res., 2002, 521(1-2), 151-163.
[http://dx.doi.org/10.1016/S1383-5718(02)00216-4] [PMID: 12438012]
[42]
Ciğerci, İ.H.; Cenkci, S.; Kargıoğlu, M.; Konuk, M. Genotoxicity of Thermopsis turcica on Allium cepa L. roots revealed by alkaline comet and random amplified polymorphic DNA assays. Cytotechnology, 2016, 68(4), 829-838.
[http://dx.doi.org/10.1007/s10616-014-9835-8] [PMID: 25550040]
[43]
Hajar, S.; Gumgumjee, M. Antimicrobial activities and evaluation of genetic effects of Moringa peregrina (forsk) fiori using molecular techniques. Int. J. Plant Anim. Environ. Sci., 2014, 4(1), 65-72.
[44]
National Committee for Clinical Laboratory of Standards/Clinical and Laboratory Standards. Institute (NCCLS/CLSI), 2007. Performance standards for antimicrobial susceptibility testing, Seventeenth 30. informational supplement, M2-A9 and M7-A7. Wayne, PA., USA , 2007.
[45]
Kumar, S.; Gurusubramanian, G. Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage in mosquito larvae treated with plant extracts. Sci. Vis., 2011, 11(3), 155-158.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy