Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

N-Methylation of Nitrogen-Containing Organic Substrates: A Comprehensive Overview

Author(s): Saad Moulay*

Volume 23, Issue 16, 2019

Page: [1695 - 1737] Pages: 43

DOI: 10.2174/1385272823666190823114547

Price: $65

Abstract

The present account surveys the results of the plethora of works on Nmethylation of nitrogen-containing substrates, mainly amines. The countless reports in the literature on this issue reveal the emergence of a set of methylating agents, which include: methanol, dimethyl carbonate, formaldehyde/formic acid, carbon dioxide/reductant, methyl iodide, dimethylsulfate, peroxides, dimethylsulfoxide, tetramethylammonium salts, and other unusual ones. Types of the methylating agents including, catalyst, solvent, base, ligand, reducing agent and other reaction conditions such as temperature and time would greatly affect the extent of selectivity of N-monomethylation vis-à-vis N,N-dimethylation. The degree of acidity or alkalinity of catalysts such as the solid catalysts (i.e. zeolites) showed a substantial impact on the selectivity and the course of methylation, leading to design adequate catalysts or to bring suitable modifications to the existing ones. Although this account takes into consideration all types of methylating agents, it is worthwhile to mention that the relatively recent works have been focused on the utilization of eco-friendly methylating agents, including carbon dioxide/reductant, methanol, and dimethylcarbonate. N-Methyl-containing drugs were successfully synthesized with some methylating agents under specified conditions. In some instances, unexpected products and events from the planned N-methylation of some nitrogen-containing molecules occurred. N-Formylation occurred as an intermediate or concomitant reaction when amines were subjected to catalyze methylation with methanol, formaldehyde/ formic acid, and carbon dioxide/reductant. The occasionally depicted mechanisms would elucidate the carbon and hydrogen sources of the affixing methyl group on the nitrogen site. Peculiarly, methylation involving methanol as a methylating agent and transition metal catalysis called for borrowing hydrogen process as a new mechanistic approach.

Keywords: Amines, aniline, formaldehyde, formic acid, methanol, methylation, methylating agent.

Next »
Graphical Abstract

[1]
Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev., 2011, 111(9), 5215-5246.
[http://dx.doi.org/10.1021/cr200060g] [PMID: 21631125]
[2]
Schönherr, H.; Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(47), 12256-12267.
[http://dx.doi.org/10.1002/anie.201303207] [PMID: 24151256]
[3]
Moulay, S. Methyl, the smallest alkyl groups with stunning effects. Chemistry, 2018, 27(5), 759-770.
[4]
Butler, T.C. The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin, and 2-4-oxazolidinedione. J. Am. Pharm. Assoc. Am. Pharm. Assoc., 1955, 44(6), 367-370.
[http://dx.doi.org/10.1002/jps.3030440618] [PMID: 14381308]
[5]
Butler, T.C.; Waddell, W.J. N-methylated derivatives of barbituric acid, hydantoin and oxazolidinedione used in the treatment of epilepsy. Neurology, 1958, 8(Suppl. 1), 106-112.
[http://dx.doi.org/10.1212/WNL.8.Suppl_1.106] [PMID: 13541627]
[6]
Aurelio, L.; Brownlee, R.T.; Hughes, A.B. Synthetic preparation of N-methyl-alpha-amino acids. Chem. Rev., 2004, 104(12), 5823-5846.
[http://dx.doi.org/10.1021/cr030024z] [PMID: 15584690]
[7]
Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-methylation of peptides: A new perspective in medicinal chemistry. Acc. Chem. Res., 2008, 41(10), 1331-1342.
[http://dx.doi.org/10.1021/ar8000603] [PMID: 18636716]
[8]
Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: An important element for modulating biological functions. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 254-269.
[http://dx.doi.org/10.1002/anie.201205674] [PMID: 23161799]
[9]
Koay, Y.C.; Richardson, N.L.; Zaiter, S.S.; Kho, J.; Nguyen, S.Y.; Tran, D.H.; Lee, K.W.; Buckton, L.K.; McAlpine, S.R. Hitting a moving target: How does an N‐methyl group impact biological activity? ChemMedChem, 2016, 11(8), 881-892.
[http://dx.doi.org/10.1002/cmdc.201500572] [PMID: 26805515]
[10]
Di Gioia, M.L.; Leggio, A.; Malagrinò, F.; Romio, E.; Siciliano, C.; Liguori, A. N-Methylated α-amino acids and peptides: Synthesis and biological activity. Mini Rev. Med. Chem., 2016, 16(9), 683-690.
[http://dx.doi.org/10.2174/1389557516666160322152457] [PMID: 27001259]
[11]
Räder, A.F.B.; Reichart, F.; Weinmüller, M.; Kessler, H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem., 2018, 26(10), 2766-2773.
[http://dx.doi.org/10.1016/j.bmc.2017.08.031] [PMID: 28886995]
[12]
Green, S.; Buttrum, S.; Molloy, H.; Steventon, G.; Sturman, S.; Waring, R.; Pall, H.; Williams, A. N-methylation of pyridines in Parkinson’s disease. Lancet, 1991, 338(8759), 120-121.
[http://dx.doi.org/10.1016/0140-6736(91)90113-4] [PMID: 1676447]
[13]
Matsubara, K.; Aoyama, K.; Suno, M.; Awaya, T. N-methylation underlying Parkinson’s disease. Neurotoxicol. Teratol., 2002, 24(5), 593-598.
[http://dx.doi.org/10.1016/S0892-0362(02)00212-X] [PMID: 12200190]
[14]
Moulay, S. O-Methylation of hydroxyl-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2018, 22(20), 1986-2016.
[http://dx.doi.org/10.2174/1385272822666180910140543]
[15]
Lamoureux, G.; Agüero, C. A comparison of several modern alkylating agents. ARKIVOC, 2009, (1), 251-264.
[16]
Chen, Y. Recent advances in methylation: A guide for selecting methylation reagents. Chemistry, 2019, 25(14), 3405-3439.
[http://dx.doi.org/10.1002/chem.201803642] [PMID: 30328642]
[17]
Corma, A.; Navas, J.; Sabater, M.J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev., 2018, 118(4), 1410-1459.
[http://dx.doi.org/10.1021/acs.chemrev.7b00340] [PMID: 29319294]
[18]
Reed-Berendt, B.G.; Polidano, K.; Morrill, L.C. Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Org. Biomol. Chem., 2019, 17(7), 1595-1607.
[http://dx.doi.org/10.1039/C8OB01895B] [PMID: 30222171]
[19]
Yuan, C.; Zhu, L.; Chen, C.; Chen, X.; Yang, Y.; Lan, Y.; Zhao, Y. Ruthenium(II)-enabled para-selective C-H difluoromethylation of anilides and their derivatives. Nat. Commun., 2018, 9(1), 1189.
[http://dx.doi.org/10.1038/s41467-018-03341-6] [PMID: 29567953]
[20]
Tian, C.; Yang, L-M.; Tian, H-T.; An, G-H.; Li, G-M. C5-selective trifluoromethylation of 8-amino quinolines via photoredox catalysis. J. Fluor. Chem., 2019, 219, 23-28.
[http://dx.doi.org/10.1016/j.jfluchem.2018.12.011]
[21]
Tian, C.; Yao, X.; Ji, W.; Wang, Q.; An, G.; Li, G. A para‐C–H functionalization of aniline derivatives via in situ generated bulky hypervalent iodinium reagents. Eur. J. Org. Chem., 2018, 2018(43), 5972-5979.
[http://dx.doi.org/10.1002/ejoc.201801058]
[22]
Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Organic photoredox catalytic decarboxylative cross-coupling of gem-difluoroalkenes with unactivated carboxylic acids. Org. Chem. Front., 2019.
[http://dx.doi.org/10.1039/C9QO00495E]
[23]
Liang, Y.; Zhang, X.; MacMillan, D.W.C. Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis. Nature, 2018, 559(7712), 83-88.
[http://dx.doi.org/10.1038/s41586-018-0234-8] [PMID: 29925943]
[24]
Jin, G.; Werncke, C.G.; Escudié, Y.; Sabo-Etienne, S.; Bontemps, S. Iron-catalyzed reduction of CO2 into methylene: Formation of C–N, C–O, and C–C bonds. J. Am. Chem. Soc., 2015, 137(30), 9563-9566.
[http://dx.doi.org/10.1021/jacs.5b06077] [PMID: 26203769]
[25]
Li, K-T.; Peng, Y-C. Methylation of n-butylamine over solid-acid catalysts. Appl. Catal. A Gen., 1994, 109(2), 225-233.
[http://dx.doi.org/10.1016/0926-860X(94)80120-7]
[26]
Oku, T.; Ikariya, T. Enhanced product selectivity in continuous N-methylation of amino alcohols over solid acid-base catalysts with supercritical methanol. Angew. Chem. Int. Ed. Engl., 2002, 41(18), 3476-3479.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3476:AID-ANIE3476>3.0.CO;2-5] [PMID: 12298070]
[27]
Oku, T.; Arita, Y.; Tsuneki, H.; Ikariya, T. Continuous chemoselective methylation of functionalized amines and diols with supercritical methanol over solid acid and acid-base bifunctional catalysts. J. Am. Chem. Soc., 2004, 126(23), 7368-7377.
[http://dx.doi.org/10.1021/ja048557s] [PMID: 15186176]
[28]
Horikawa, Y.; Uchino, Y.; Sako, T. Alkylation and acetal formation using supercritical alcohol without catalyst. Chem. Lett., 2003, 32(3), 232-233.
[http://dx.doi.org/10.1246/cl.2003.232]
[29]
Takebayashi, Y.; Yoda, S.; Sugeta, T.; Otake, K.; Morita, Y.; Sakai, H.; Abe, M. Kinetics of methylation of hydroquinone and aniline in super-critical methanol without catalyst. In:. Asian Pacific Confederation of Chemical Engineers Congress Program and Abstract, The Society of Chemical Engineers, Japan, 2004.
[http://dx.doi.org/10.11491/apcche.2004.0.822.0]
[30]
Takebayashi, Y.; Morita, Y.; Sakai, H.; Abe, M.; Yoda, S.; Furuya, T.; Sugeta, T.; Otake, K. Noncatalytic mono-N-methylation of aniline in supercritical methanol: The kinetics and acid/base effect. Chem. Commun. (Camb.), 2005, (31), 3965-3967.
[http://dx.doi.org/10.1039/b504050g] [PMID: 16075087]
[31]
Chen, P.Y.; Chen, H.C.; Chu, H.Y.; Chang, N.S.; Chuang, T.K. The selective alkylation of aniline with methanol over ZSM-5 zeolite. Stud. Surf. Sci. Catal., 1986, 28, 739-746.
[http://dx.doi.org/10.1016/S0167-2991(09)60942-3]
[32]
Su, B.L.; Denise Barthomeuf, D. Alkylation of aniline with methanol: Change in selectivity with acido-basicity of faujasite catalysts. Appl. Catal. A Gen., 1995, 124(1), 73-80.
[http://dx.doi.org/10.1016/0926-860X(94)00247-9]
[33]
Su, B.L.; Denise Barthomeuf, D. Comparison of acid-base properties of FAU, EMT, LTL and MOR (Na forms) in benzene adsorption and alkylation of aniline with methanol. Appl. Catal. A Gen., 1995, 124(1), 81-90.
[http://dx.doi.org/10.1016/0926-860X(94)00248-7]
[34]
Garces, L.J.; Makwana, V.D.; Hincapie, B.; Sacco, A.; Suib, S.L.; Selective, N. N-methylation of aniline over cocrystallized zeolites RHO and zeolite X (FAU) and over Linde type L (Sr,K-LTL). J. Catal., 2003, 217(1), 107-116.
[http://dx.doi.org/10.1016/S0021-9517(03)00048-4]
[35]
Gracia-Trujillo, M.J.; Jurado-Pescuezo, M.J.; Gracia-Serrano, M.D.; Campelo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Proceedings of 4th International FEZA Conference A, 2008, pp. 1331-1334.
[36]
Campelo, J.M.; Leon, R.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Catalytic activity, deactivation and re-use of AI-MCM-41 for N-methylation of aniline. Stud. Surf. Sci. Catal., 2002, 142, 1299-1306.
[http://dx.doi.org/10.1016/S0167-2991(02)80293-2]
[37]
Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A.; Toledano, J.J. 25-P-11-Physicochemical characterization and catalytic activity of Al-HMS for N-methylation of aniline. Stud. Surf. Sci. Catal., 2001, 135, 281.
[http://dx.doi.org/10.1016/S0167-2991(01)81619-0]
[38]
Woo, S.I.; Lee, J.K.; Hong, S.B.; Park, Y.K.; Uh, Y.S. Selective alkylation of aniline with methanol over boronsilicate molecular sieve. Stud. Surf. Sci. Catal., 1989, 49, 1095-1103.
[http://dx.doi.org/10.1016/S0167-2991(08)61996-5]
[39]
Park, Y.K.; Park, K.Y.; Woo, S.I. Selective alkylation of aniline with methanol over metallosilicates. Catal. Lett., 1994, 26, 169-180.
[http://dx.doi.org/10.1007/BF00824042]
[40]
Yang, C.; He, N.; Xu, Q. High selective alkylation of aniline with methanol to N-methylaniline over [Fe]-KL molecular sieves. J. Incl. Phenom. Macrocycl. Chem., 1999, 35(1-2), 123-130.
[http://dx.doi.org/10.1023/A:1008158702009]
[41]
Nehate, M.; Bokade, V.V. Selective N-alkylation of aniline with methanol over a heteropolyacid on montmorillonite K10. Appl. Clay Sci., 2009, 44(3-4), 255-258.
[http://dx.doi.org/10.1016/j.clay.2009.02.011]
[42]
Ma, H.; Wang, B.; Zhao, J. A novel electrochemical alkylation of aniline with methanol over Zn/Cu salts modified kaolin. J. Hazard. Mater., 2008, 152(2), 463-468.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.011] [PMID: 17706340]
[43]
Hill, A.G.; Shipp, J.H.; Hill, A.J. Catalytic reactions of aromatic amines alkylation with alcohols. Ind. Eng. Chem., 1951, 43(7), 1579-1583.
[http://dx.doi.org/10.1021/ie50499a032]
[44]
Ko, A-N.; Yang, C-L.; Zhu, W-e.; Lin, H-e. Selective N-alkylation of aniline with methanol over γ-alumina. Appl. Catal. A Gen., 1996, 134(1), 53-66.
[http://dx.doi.org/10.1016/0926-860X(95)00209-X]
[45]
Valot, F.; Fache, F.; Jacquot, R.; Spagnol, M.; Lemaire, M. Gas-phase selective N-alkylation of amines with alcohols over γ-alumina. Tetrahedron Lett., 1999, 40(19), 3689-3592.
[http://dx.doi.org/10.1016/S0040-4039(99)00588-2]
[46]
Prasad, S.; Rao, B.S. Mechanism of aniline alkylation with methanol over AlPO4-5. J. Mol. Catal., 1990, 62, L17-L22.
[http://dx.doi.org/10.1016/0304-5102(90)85204-U]
[47]
Elangovan, S.P.; Krishnasamy, V.; Murugesan, V. Synthesis, characterisation and aniline. Methylation activity of VAPO-5 and VAPO-11. Indian J. Chem. Sect. A, 1995, 34A(06), 469-471.
[48]
Elangovan, S.P.; Kannan, C.; Arabindoo, B.; Murugesan, V. Aniline methylation over AFI and AEL type molecular sieves. Appl. Catal. A Gen., 1998, 174(1-2), 213-219.
[http://dx.doi.org/10.1016/S0926-860X(98)00189-6]
[49]
Nagaraju, N.; Kuriakose, G. Activity of amorphous V-AlPO4 and Co-AlPO4 in the selective synthesis of N-monoalkylated aniline via alkylation of aniline with methanol or dimethyl carbonate. New J. Chem., 2003, 27(4), 765-768.
[http://dx.doi.org/10.1039/b208085k]
[50]
Bautista, F.M.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A.; Urbano, M.R. N-Alkylation of aniline with methanol over CrPO4 and CrPO4-AlPO4 (5-50 wt% AlPO4) catalysts. J. Catal., 1997, 172, 103-109.
[http://dx.doi.org/10.1006/jcat.1997.1868]
[51]
Bautista, F.M.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A. N-methylation of aniline over AlPO4 and AlPO4-metal oxide catalysts. Stud. Surf. Sci. Catal., 1997, 108, 123-130.
[http://dx.doi.org/10.1016/S0167-2991(97)80896-8]
[52]
Bautista, F.M.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A. N-Alkylation of aniline with methanol over AlPO4-Al2O3 catalysts. Appl. Catal. A Gen., 1998, 166(1), 39-45.
[http://dx.doi.org/10.1016/S0926-860X(97)00237-8]
[53]
Aramendía, M.Á.; Borau, V.; Jiménez, C.; Marinas, J.M.; Romero, F.J. N-alkylation of aniline with methanol over magnesium phosphates. Appl. Catal. A Gen., 1999, 183(1), 73-80.
[http://dx.doi.org/10.1016/S0926-860X(99)00042-3]
[54]
Aramendía, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Romero, F.J. Effects of Na2CO3 impregnation on the catalytic activity of Mg3(PO4)2 in the gas-phase conversion of 2-hexanol and the alkylation of aniline with methanol. Colloids Surf. A Physicochem. Eng. Asp., 2000, 170(1), 51-58.
[http://dx.doi.org/10.1016/S0927-7757(00)00474-X]
[55]
Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R.V. Transition-metal-catalyzed utilization of methanol as a C1 source in organic synthesis. Angew. Chem. Int. Ed. Engl., 2017, 56(23), 6384-6394.
[http://dx.doi.org/10.1002/anie.201612520] [PMID: 28276611]
[56]
Grigg, R.; Mitchell, T.R.B.; Sutthivaiyakit, S.; Tongpenyai, N. Transition metal-catalysed N-alkylation of amines by alcohols. J. Chem. Soc. Chem. Commun., 1981, (12), 611-612.
[http://dx.doi.org/10.1039/c39810000611]
[57]
Arcelli, A.; Khai, B-T.; Porzi, G. Selective conversion of primary amines into N,N-dimethylalkyl- or N,N-dialkylmethyl-amines with methanol and RuCl2(Ph3P)3. J. Organomet. Chem., 1982, 235(1), 93-96.
[http://dx.doi.org/10.1016/S0022-328X(00)85724-1]
[58]
Huh, K-T.; Tsuji, Y.; Kobayashi, M.; Okuda, F.; Watanabe, Y. Ruthenium-catalyzed N-methylation of aminoarenes using methanol. Chem. Lett., 1988, 17(3), 449-452.
[http://dx.doi.org/10.1246/cl.1988.449]
[59]
Del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P. Cyclopentadienyl Ru II complexes as highly efficient catalysts for the N-methylation of alkylamines by methanol. Eur. J. Inorg. Chem., 2004, 3, 524-529.
[http://dx.doi.org/10.1002/ejic.200300518]
[60]
Dang, T.T.; Ramalingam, B.; Seayad, A.M. Efficient ruthenium-catalyzed N methylation of amines using methanol. ACS Catal., 2015, 5(7), 4082-4088.
[http://dx.doi.org/10.1021/acscatal.5b00606]
[61]
Naskar, S.; Bhattacharjee, M. Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Lett., 2007, 48(19), 3367-3370.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.075]
[62]
Choi, G.; Hong, S.H. Selective N-formylation and N-methylation of amines using methanol as a sustainable C1 source. ACS Sustain. Chem.& Eng., 2019, 7(1), 716-723.
[http://dx.doi.org/10.1021/acssuschemeng.8b04286]
[63]
Paul, B.; Shee, S.; Chakrabarti, K.; Kundu, S. Tandem transformation of nitro compounds into N-methylated amines: Greener strategy for the utilization of methanol as a methylating agent. ChemSusChem, 2017, 10(11), 2370-2374.
[http://dx.doi.org/10.1002/cssc.201700503] [PMID: 28422436]
[64]
Paul, B.; Shee, S.; Panja, D.; Chakrabarti, K.; Kundu, S. Direct synthesis of N,N-dimethylated and β-methyl N,N-dimethylated amines from nitriles using methanol: Experimental and computational studies. ACS Catal., 2018, 8(4), 2890-2896.
[http://dx.doi.org/10.1021/acscatal.8b00021]
[65]
Chakrabarti, K.; Mishra, A.; Panja, D.; Paul, B.; Kundu, S. Selective synthesis of mono- and di-methylated amines using methanol and sodium azide as C1 and N1 sources. Green Chem., 2018, 20(14), 3339-3345.
[http://dx.doi.org/10.1039/C8GC00863A]
[66]
Li, F.; Xie, J.; Shan, H.; Sun, C.; Chen, L. General and efficient method for direct N-monomethylation of aromatic primary amines with methanol. RSC Advances, 2012, 2(23), 8645-8652.
[http://dx.doi.org/10.1039/c2ra21487c]
[67]
Campos, J.; Sharninghausen, L.S.; Manas, M.G.; Crabtree, R.H. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes. Inorg. Chem., 2015, 54(11), 5079-5084.
[http://dx.doi.org/10.1021/ic502521c] [PMID: 25615426]
[68]
Chen, J.; Wu, J.; Tu, T. Sustainable and selective monomethylation of anilines by methanol with solid molecular NHC-Ir catalysts. ACS Sustain. Chem.& Eng., 2017, 5(12), 11744-11751.
[http://dx.doi.org/10.1021/acssuschemeng.7b03246]
[69]
Toyooka, G.; Tuji, A.; Fujita, K-e. Efficient and versatile catalytic systems for the N-methylation of primary amines with methanol catalyzed by N-heterocyclic carbene complexes of iridium. Synthesis, 2018, 50(23), 4617-4626.
[http://dx.doi.org/10.1055/s-0037-1610252]
[70]
Zou, Q.; Wang, C.; Smith, J.; Xue, D.; Xiao, J. Alkylation of amines with alcohols and amines by a single catalyst under mild conditions. Chemistry, 2015, 21(27), 9656-9661.
[http://dx.doi.org/10.1002/chem.201501109] [PMID: 26039102]
[71]
Oikawa, K.; Itoh, S.; Yano, H.; Kawasaki, H.; Obora, Y. Preparation and use of DMF-stabilized iridium nanoclusters as methylation catalysts using methanol as the C1 source. Chem. Commun. (Camb.), 2017, 53(6), 1080-1083.
[http://dx.doi.org/10.1039/C6CC09279A] [PMID: 28044173]
[72]
Liang, R.; Li, S.; Wang, R.; Lu, L.; Li, F. N-methylation of amines with methanol catalyzed by a Cp*Ir complex bearing a functional 2,2′-bibenzimidazole ligand. Org. Lett., 2017, 19(21), 5790-5793.
[http://dx.doi.org/10.1021/acs.orglett.7b02723] [PMID: 29039671]
[73]
Xu, C-P.; Xiao, Z-H.; Zhuo, B-Q.; Wang, Y-H.; Huang, P-Q. Efficient and chemoselective alkylation of amines/amino acids using alcohols as alkylating reagents under mild conditions. Chem. Commun. (Camb.), 2010, 46(41), 7834-7836.
[http://dx.doi.org/10.1039/c0cc01487g] [PMID: 20830335]
[74]
Zhang, L.; Zhang, Y.; Deng, Y.; Shi, F. Light-promoted, N, N-dimethylation of amine and nitro compound with methanol catalyzed by Pd/TiO2 at room temperature. RSC Advances, 2015, 5(19), 14514-14521.
[http://dx.doi.org/10.1039/C4RA13848A]
[75]
Tsarev, V.N.; Morioka, Y.; Caner, J.; Wang, Q.; Ushimaru, R.; Kudo, A.; Naka, H.; Saito, S. N-methylation of amines with methanol at room temperature. Org. Lett., 2015, 17(10), 2530-2533.
[http://dx.doi.org/10.1021/acs.orglett.5b01063] [PMID: 25915546]
[76]
Wang, L-M.; Morioka, Y.; Jenkinson, K.; Wheatley, A.E.H.; Saito, S.; Naka, H. N-Alkylation of functionalized amines with alcohols using a copper-gold mixed photocatalytic system. Sci. Rep., 2018, 8, 6931.
[78]
Wei, D.; Sadek, O.; Dorcet, V.; Roisnel, T.; Darcel, C.; Gras, E.; Clot, E.; Sortais, J-B. Selective mono N-methylation of anilines with methanol catalyzed by rhenium complexes: An experimental and theoretical study. J. Catal., 2018, 366, 300-309.
[http://dx.doi.org/10.1016/j.jcat.2018.08.008]
[79]
Elangovan, S.; Neumann, J.; Sortais, J-B.; Junge, K.; Darcel, C.; Beller, M. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun., 2016, 7, 12641.
[http://dx.doi.org/10.1038/ncomms12641] [PMID: 27708259]
[80]
Bruneau-Voisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J-B. Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. J. Catal., 2017, 347, 57-62.
[http://dx.doi.org/10.1016/j.jcat.2017.01.004]
[81]
Neumann, J.; Elangovan, S.; Spannenberg, A.; Junge, K.; Beller, M. Improved and general manganese-catalyzed N-methylation of aromatic amines using methanol. Chemistry, 2017, 23(23), 5410-5413.
[http://dx.doi.org/10.1002/chem.201605218] [PMID: 28106299]
[82]
Mastalir, M.; Tomsu, G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Co(II) PCP pincer complexes as catalysts for the alkylation of aromatic amines with primary alcohols. Org. Lett., 2016, 18(14), 3462-3465.
[http://dx.doi.org/10.1021/acs.orglett.6b01647] [PMID: 27356282]
[83]
Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Efficient cobalt-catalyzed methylation of amines using methanol. Adv. Synth. Catal., 2017, 359(24), 4278-4283.
[http://dx.doi.org/10.1002/adsc.201701044]
[84]
Polidano, K.; Allen, B.D.W.; Williams, J.M.J.; Morrill, L.C. Iron-catalyzed methylation using the borrowing hydrogen approach. ACS Catal., 2018, 8(7), 6440-6445.
[http://dx.doi.org/10.1021/acscatal.8b02158]
[85]
Khusnutdinov, R.I.; Bayguzina, A.R.; Aminov, R.I. Alkylation of aniline with methanol in the presence of FeCl3·6H2O in carbon tetrachloride. Russ. J. Org. Chem., 2013, 49(10), 1447-1450.
[http://dx.doi.org/10.1134/S1070428013100072]
[86]
Xu, L.; Li, X.; Zhu, Y.; Xiang, Y. One-pot synthesis of N,N-dimethylaniline from nitrobenzene and methanol. New J. Chem., 2009, 33(10), 2051-2054.
[http://dx.doi.org/10.1039/b905656d]
[87]
Vijayaraj, M.; Gopinath, C.S. Spectroscopic witness from reactants to product: FTIR studies on selective mono-N-methylation of aniline on Cu1xZnxFe2O4. J. Catal., 2004, 226(1), 230-234.
[http://dx.doi.org/10.1016/j.jcat.2004.05.020]
[88]
Vijayaraj, M.; Murugan, B.; Umbarkar, S.; Hegde, S.G.; Gopinath, C.S. An insight into the mechanism of selective mono-N-methylation of aniline on Cu1xZnxFe2O4: A DRIFTS study. J. Mol. Catal. Chem., 2005, 231(1-2), 169-180.
[http://dx.doi.org/10.1016/j.molcata.2005.01.014]
[89]
Vijayaraj, M.; Gopinath, C.S. On the “Active spacer and stabilizer” role of Zn in Cu1xZnxFe2O4 in the selective mono-N-methylation of aniline: XPS and catalysis study. J. Catal., 2006, 241(1), 83-95.
[http://dx.doi.org/10.1016/j.jcat.2006.04.010]
[90]
Vijayaraj, M.; Gopinath, C.S. Selective mono-N-methylation of aniline substrates on Cu1-x ZnxFe2O4. Appl. Catal. A Gen., 2007, 320, 64-68.
[http://dx.doi.org/10.1016/j.apcata.2006.12.016]
[91]
Sreekumar, K.; Sugunan, S. A comparison on the catalytic activity of Zn1xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0)-type ferrospinels prepared via a low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent. Appl. Catal. A Gen., 2002, 230, 245-251.
[http://dx.doi.org/10.1016/S0926-860X(02)00006-6]
[92]
Stytsenko, V.D.; Huu, T.D.; Vinokurov, V.A. Catalytic alkylation of aniline with methanol. Kinet. Catal., 2005, 46(3), 376-379.
[93]
Ono, Y. Dimethyl carbonate for environmentally benign reactions. Catal. Today, 1997, 35(1-2), 15-25.
[http://dx.doi.org/10.1016/S0920-5861(96)00130-7]
[94]
Tundo, P. New developments in dimethyl carbonate chemistry. Pure Appl. Chem., 2001, 73(7), 1117-1124.
[http://dx.doi.org/10.1351/pac200173071117]
[95]
Tundo, P.; Perosa, A. Green organic syntheses: Organic carbonates as methylating agents. Chem. Rec., 2002, 2(1), 13-23.
[http://dx.doi.org/10.1002/tcr.10007] [PMID: 11933258]
[96]
Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res., 2002, 35(9), 706-716.
[http://dx.doi.org/10.1021/ar010076f] [PMID: 12234200]
[97]
Selva, M.; Perosa, A. Green chemistry metrics: A comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chem., 2008, 10(4), 457-464.
[http://dx.doi.org/10.1039/b713985c]
[98]
Aricò, F.; Tundo, P. Dimethyl carbonate: A modern green reagent and solvent. Russ. Chem. Rev., 2010, 79(6), 479-489.
[99]
Kim, K.H.; Lee, E.Y. Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil. Energies, 2017, 10(11), 1-15.
[http://dx.doi.org/10.3390/en10111790]
[100]
Tundo, P.; Musolino, M.; Aricò, F. The reactions of dimethyl carbonate and its derivatives. Green Chem., 2018, 20(1), 28-85.
[http://dx.doi.org/10.1039/C7GC01764B]
[101]
Fiorani, G.; Perosa, A.; Selva, M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables. Green Chem., 2018, 20(2), 288-322.
[http://dx.doi.org/10.1039/C7GC02118F]
[102]
Fu, Z-H.; Ono, Y. Selective N-monomethylation of aniline with dimethyl carbonate over Y-zeolites. Catal. Lett., 1993, 18(1-2), 59-63.
[http://dx.doi.org/10.1007/BF00769498]
[103]
Rao, P.R.H.P.; Massiani, P.; Barthomeuf, D. Selectivity to N-mono or dialkylation in the reaction of aniline with dimethyl carbonate on faujasite, EMT and beta alkaline zeolites. Catal. Lett., 1995, 31(1), 115-120.
[http://dx.doi.org/10.1007/BF00817038]
[104]
Selva, M.; Bomben, A.; Tundo, P. Selective mono-N-methylation of primary aromatic amines by dimethylcarbonate over faujasite X- and Y-type zeolites. J. Chem. Soc., Perkin Trans. 1, 1997, 1041-1046.
[http://dx.doi.org/10.1039/a606684d]
[105]
Selva, M.; Tundo, P.; Perosa, A. Reaction of primary aromatic amines with alkyl carbonates over NaY faujasite: A convenient and selective access to mono-N-alkyl anilines. J. Org. Chem., 2001, 66(3), 677-680.
[http://dx.doi.org/10.1021/jo0006728] [PMID: 11430081]
[106]
Selva, M.; Tundo, P.; Perosa, A. Mono-N-methylation of primary amines with alkyl methyl carbonates over Y faujasites. 2. Kinetics and selectivity. J. Org. Chem., 2002, 67(26), 9238-9247.
[http://dx.doi.org/10.1021/jo026057g] [PMID: 12492325]
[107]
Selva, M.; Tundo, P. Selective N-methylation of primary aliphatic amines with dimethyl carbonate in the presence of alkali cation exchanged Y-faujasites. Tetrahedron Lett., 2003, 44(44), 8139-8142.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.016]
[108]
Selva, M.; Tundo, P.; Perosa, A. Reaction of functionalized anilines with dimethyl carbonate over NaY faujasite. 3. chemoselectivity toward mono-N-methylation. J. Org. Chem., 2003, 68(19), 7374-7378.
[http://dx.doi.org/10.1021/jo034548a] [PMID: 12968889]
[109]
Selva, M.; Tundo, P.; Foccardi, T. Mono-N-methylation of functionalized anilines with alkyl methyl carbonates over NaY faujasites. 4. Kinetics and selectivity. J. Org. Chem., 2005, 70(7), 2476-2485.
[http://dx.doi.org/10.1021/jo048076r] [PMID: 15787533]
[110]
Selva, M.; Tundo, P. Synthesis of mono-N-substituted functionalized anilines. EP 1 431 274 B1, 2007, 33
[111]
Ebenezer, W.J.; Hutchings, M.G.; Jones, K.; Lambert, D.A.; Watt, I. Highly selective zeolite-catalysed mono-N-alkylation of arylenediamines by dialkyl carbonates. Tetrahedron Lett., 2007, 48(9), 1641-1643.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.131]
[112]
Esakkidurai, T.; Pitchumani, K. Zeolite-promoted selective mono-N-methylation of aniline with dimethyl carbonate. J. Mol. Catal. Chem., 2004, 218(2), 196-201.
[http://dx.doi.org/10.1016/j.molcata.2004.03.047]
[113]
Selva, M.; Perosa, A.; Fabris, M. Sequential coupling of the transesterification of cyclic carbonates with the selective N-methylation of anilines catalysed by faujasites. Green Chem., 2008, 10, 1068-1077.
[http://dx.doi.org/10.1039/b805436c]
[114]
Qiu, Z.; Wang, K.; Li, Z.; Li, T.; Bai, J.; Yin, C.; Ye, X.; Liu, H. Full N, N-methylation of 4,4′ -methylenedianiline with dimethyl carbonate: A feasible access to 4,4′-methylene bis (N,N-dimethylaniline). J. Chem., 2018.
[http://dx.doi.org/10.1155/2018/4627903]
[115]
Jiang, X. Methylation of indole compounds using dimethyl carbonate. US Patent, 6,326,501 B1, 2001.
[116]
Jiang, X.; Tiwari, A.; Thompson, M.; Chen, Z.; Cleary, T.P.; Lee, T.B.K. A practical method for N-methylation of indoles using dimethyl carbonate. Org. Process Res. Dev., 2001, 5(6), 604-608.
[http://dx.doi.org/10.1021/op0102215]
[117]
Lissel, M.; Rohani-Dezfuli, A.R.; Vogt, G. Reactions with dimethyl carbonate. Part 3. Applications and mechanisms of mono- or bis-methylation of aromatic amines with dimethyl carbonate. J. Chem. Res.(S), 1989, 10, 2434-2452.
[118]
Lissel, M.; Rohani-Dezfuli, A.R.; Vogt, G. Reactions with dimethyl carbonate. Part 3. Applications and mechanisms of mono- or bis-methylation of aromatic amines with dimethyl carbonate. Chem. Inform, 1990, 21(7), Abstract 9007-9132.
[http://dx.doi.org/10.1002/chin.199007132]
[119]
Sharma, S.; Ameta, S.C.; Sharma, V.K. Use of dimethyl carbonate (DMC) as methylating agent under microwave irradiation-A green chemical approach. In: Proceedings of the World Congress on Engineering and Computer Science, 2010, Vol II2010, October 20-22
[120]
Yan, H.; Zeng, L.; Xie, Y.; Cui, Y.; Ye, L.; Tu, S. N-Methylation of poorly nucleophilic aromatic amines with dimethyl carbonate. Res. Chem. Intermed., 2016, 42(6), 5951-5960.
[http://dx.doi.org/10.1007/s11164-015-2416-4]
[121]
Zhao, S-Y.; Zhang, H-Q.; Zhang, D-Q.; Shao, Z-Y. N-Methylation of NH-containing heterocycles with dimethyl carbonate catalyzed by TMEDA. Synth. Commun., 2012, 42(1), 128-135.
[http://dx.doi.org/10.1080/00397911.2010.523151]
[122]
Taleb, A.B.; Jenner, G. Scope of the N-alkylation of amides and the C-alkylation of malonates by methyl formate and dimethyl carbonate. J. Mol. Catal., 1993, 84(2), L131-L136.
[http://dx.doi.org/10.1016/0304-5102(93)85044-T]
[123]
Shieh, W-C.; Dell, S.; Bach, A.; Repič, O.; Blacklock, T.J. Dual nucleophilic catalysis with DABCO for the N-methylation of indoles. J. Org. Chem., 2003, 68(5), 1954-1957.
[http://dx.doi.org/10.1021/jo0266644] [PMID: 12608816]
[124]
Shieh, W-C.; Dell, S. Accelerated process for preparing O-methyl phenols, N-methyl heteroaromatic compounds, and methylated aminophenols. US Patent, 6,706,929 B2, Mar. 16,, 2004.
[125]
Quaranta, E.; Carafa, M.; Trani, F. The reaction of pyrrole with dimethyl carbonate under phosphazene catalysis: N-Methoxycarbonylation vs N-methylation. Appl. Catal. B, 2009, 91(1-2), 380-388.
[http://dx.doi.org/10.1016/j.apcatb.2009.06.004]
[126]
Seo, H.; Bédard, A-C.; Chen, W.P.; Hicklin, R.W.; Alabugin, A.; Jamison, T.F. Selective N-monomethylation of primary anilines with dimethyl carbonate in continuous flow. Tetrahedron, 2018, 74(25), 3124-3128.
[http://dx.doi.org/10.1016/j.tet.2017.11.068]
[127]
Ochoa-Terán, A.; Guerrero, L.; Rivero, I.A. A novel one-pot and one-step microwave-assisted cyclization-methylation reaction of amino alcohols and acetylated derivatives with dimethyl carbonate and TBAC, 2014.
[http://dx.doi.org/10.1155/2014/634935]
[128]
Zheng, J.; Darcel, C.; Sortais, J-B. Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun. (Camb.), 2014, 50(91), 14229-14232.
[http://dx.doi.org/10.1039/C4CC05517A] [PMID: 25285339]
[129]
Tayebee, R.; Seresht, E.R.; Jafari, F.; Rabiei, S. Simple methodology for the aerobic N-methylation of substituted anilines catalyzed by zirconium oxychloride octahydrate, ZrOCl2·8H2O. Ind. Eng. Chem. Res., 2013, 52(32), 11001-11006.
[http://dx.doi.org/10.1021/ie4018786]
[130]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Appl. Catal. A Gen., 2010, 378(1), 19-25.
[http://dx.doi.org/10.1016/j.apcata.2010.01.042]
[131]
Li, Y.; Sorribes, I.; Vicent, C.; Junge, K.; Beller, M. Convenient reductive methylation of amines with carbonates at room temperature. Chemistry, 2015, 21(47), 16759-16763.
[http://dx.doi.org/10.1002/chem.201502917] [PMID: 26450368]
[132]
Cabrero-Antonino, J.R.; Adam, R.; Junge, K. Beller. M. A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights and kinetic studies. Catal. Sci. Technol., 2016, 6(22), 7956-7966.
[http://dx.doi.org/10.1039/C6CY01401A]
[133]
Cabrero-Antonino, J.R.; Adam, R.; Wärnå, J.; Murzin, D.Y.; Beller, M. Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modeling. Chem. Eng. J., 2018, 351, 1129-1136.
[http://dx.doi.org/10.1016/j.cej.2018.06.174]
[134]
Liu, M.; Qin, T.; Zhang, Q.; Fang, C.; Fu, Y.; Lin, B-L. Thermal-reductive transformations of carbon dioxide catalyzed by small molecules using earth-abundant elements. Sci. China Chem., 2015, 58(10), 1524-1531.
[http://dx.doi.org/10.1007/s11426-015-5405-y]
[135]
Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. Utilization of CO2 as a C1 building block for catalytic methylation reactions. ACS Catal., 2017, 7(2), 1077-1086.
[http://dx.doi.org/10.1021/acscatal.6b02715]
[136]
Liu, X-F.; Li, X-Y.; Qiao, C.; He, L-N. Transition-metal-free catalysis for the reductive ¬functionalization of CO2 with amines. Synlett, 2018, 29(05), 548-555.
[http://dx.doi.org/10.1055/s-0036-1591533]
[137]
Tlili, A.; Frogneux, X.; Blondiaux, E.; Cantat, T. Creating added value with a waste: Methylation of amines with CO2 and H2. Angew. Chem. Int. Ed. Engl., 2014, 53(10), 2543-2545.
[http://dx.doi.org/10.1002/anie.201310337] [PMID: 24519870]
[138]
Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Selective methylation of amines with carbon dioxide and H2. Angew. Chem. Int. Ed. Engl., 2013, 52(46), 12156-12160.
[http://dx.doi.org/10.1002/anie.201306850] [PMID: 24115562]
[139]
He, Z.; Liu, H.; Qian, Q.; Lu, L.; Guo, W.; Zhang, L.; Han, B. N-Methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Sci. China Chem., 2017, 60(7), 927-933.
[http://dx.doi.org/10.1007/s11426-017-9024-8]
[140]
Tamura, M.; Miura, A.; Gu, Y.; Nakagawa, Y.; Tomishige, K. Selective N-methylation of aniline to N-methylaniline with CO2 and H2 by CeO2-supported Cu sub-nanoparticle catalyst. Chem. Lett., 2017, 46(8), 1243-1246.
[http://dx.doi.org/10.1246/cl.170419]
[141]
Beydoun, K.; Vom Stein, T.; Klankermayer, J.; Leitner, W. Ruthenium-catalyzed direct methylation of primary and secondary aromatic amines using carbon dioxide and molecular hydrogen. Angew. Chem. Int. Ed. Engl., 2013, 52(36), 9554-9557.
[http://dx.doi.org/10.1002/anie.201304656] [PMID: 23946135]
[142]
Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Ruthenium-catalyzed reductive methylation of imines using carbon dioxide and molecular hydrogen. Angew. Chem. Int. Ed. Engl., 2014, 53(41), 11010-11014.
[http://dx.doi.org/10.1002/anie.201403711] [PMID: 25146346]
[143]
Beydoun, K.; Thenert, K.; Streng, E.S.; Brosinski, S.; Leitner, W.; Klankermayer, J. Selective synthesis of trimethylamine by catalytic N‐methylation of ammonia and ammonium chloride by utilizing carbon dioxide and molecular hydrogen. ChemCatChem, 2016, 8(1), 135-138.
[http://dx.doi.org/10.1002/cctc.201501116]
[144]
Cui, X.; Dai, X.; Zhang, Y.; Deng, Y.; Shi, F. Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci. (Camb.), 2014, 5(2), 649-655.
[http://dx.doi.org/10.1039/C3SC52676C]
[145]
Cui, X.; Zhang, Y.; Deng, Y.; Shi, F. N-Methylation of amine and nitro compounds with CO2/H2 catalyzed by Pd/CuZrOx under mild reaction conditions. Chem. Commun. (Camb.), 2014, 50(88), 13521-13524.
[http://dx.doi.org/10.1039/C4CC05119J] [PMID: 25238630]
[146]
Jenner, G.; Nahmed, E.M.; Libs, S. Formaldehyde and formates as sources of synthesis gas via ruthenium-catalyzed decomposition reactions. J. Mol. Catal., 1991, 64(3), 337-347.
[http://dx.doi.org/10.1016/0304-5102(91)85142-O]
[147]
Jenner, G.; Taleb, A.B. Reductive N-alkylation of nitroarenes using methyl formate as a simultaneous hydrogenating and methylating agent. J. Mol. Catal., 1992, 77(3), 247-255.
[http://dx.doi.org/10.1016/0304-5102(92)80204-T]
[148]
Kon, K.; Siddiki, S.M.A.H.; Onodera, W.; Shimizu, K. Sustainable heterogeneous platinum catalyst for direct methylation of secondary amines by carbon dioxide and hydrogen. Chemistry, 2014, 20(21), 6264-6267.
[http://dx.doi.org/10.1002/chem.201400332] [PMID: 24757090]
[149]
Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Li, Y.; Liu, T.; Zhang, B.; Wu, Q.; Yu, X.; Zhao, F. PdGa/TiO2 an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO2/H2. RSC Advances, 2016, 6(105), 103650-103656.
[http://dx.doi.org/10.1039/C6RA22089D]
[150]
Toyao, T.; Siddiki, S.M.A.H.; Morita, Y.; Kamachi, T.; Touchy, A.S.; Onodera, W.; Kon, K.; Furukawa, S.; Ariga, H.; Asakura, K.; Yoshizawa, K.; Shimizu, K.I. Rhenium-loaded TiO2: A highly versatile and chemoselective catalyst for the hydrogenation of carboxylic acid derivatives and the N-methylation of amines using H2 and CO2. Chemistry, 2017, 23(59), 14848-14859.
[http://dx.doi.org/10.1002/chem.201702801] [PMID: 28815903]
[151]
Tang, G.; Bao, H-L.; Jin, C.; Zhong, X-H Du. X.-L. Direct methylation of N-methylaniline with CO2/H2catalyzed by gold nanoparticles supported on alumina. RSC Advances, 2015, 5(12), 99678-99687.
[http://dx.doi.org/10.1039/C5RA20991A]
[152]
Du, X-L.; Tang, G.; Bao, H-L.; Jiang, Z.; Zhong, X-H.; Su, D.S.; Wang, J-Q. Direct methylation of amines with carbon dioxide and molecular hydrogen using supported gold catalysts. ChemSusChem, 2015, 8(20), 3489-3496.
[http://dx.doi.org/10.1002/cssc.201500486] [PMID: 26364582]
[153]
Li, Y.; Fang, X.; Junge, K.; Beller, M. A general catalytic methylation of amines using carbon dioxide. Angew. Chem. Int. Ed. Engl., 2013, 52(36), 9568-9571.
[http://dx.doi.org/10.1002/anie.201301349] [PMID: 23564695]
[154]
Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. CO2 as a C1-building block for the catalytic methylation of amines. Chem. Sci. (Camb.), 2013, 4(5), 2127-2131.
[http://dx.doi.org/10.1039/c3sc22240c]
[155]
González-Sebastián, L.; Flores-Alamo, M.; García, J.J. Selective N-methylation of aliphatic amines with CO2 and hydrosilanes using nickel-phosphine catalysts. Organometallics, 2015, 34(4), 763-769.
[http://dx.doi.org/10.1021/om501176u]
[156]
Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C.S.J. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2. Dalton Trans., 2015, 44(41), 18138-18144.
[http://dx.doi.org/10.1039/C5DT03506F] [PMID: 26420462]
[157]
Das, S.; Bobbink, F.D.; Laurenczy, G.; Dyson, P.J. Metal-free catalyst for the chemoselective methylation of amines using carbon dioxide as a carbon source. Angew. Chem. Int. Ed. Engl., 2014, 53(47), 12876-12879.
[http://dx.doi.org/10.1002/anie.201407689] [PMID: 25256038]
[158]
Bobbink, F.D.; Das, S.; Dyson, P.J. N-formylation and N-methylation of amines using metal-free N-heterocyclic carbene catalysts and CO2 as carbon source. Nat. Protoc., 2017, 12(2), 417-428.
[http://dx.doi.org/10.1038/nprot.2016.175] [PMID: 28125103]
[159]
Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Ma, Z.; Gao, X.; Liu, Z.B.B. (C6F5)3-catalyzed methylation of amines using CO2 as a C1 building block. Green Chem., 2015, 17(8), 4189-4193.
[http://dx.doi.org/10.1039/C5GC01386K]
[160]
Fang, C.; Lu, C.; Liu, M. Zhu, Y.; Fu, Y.; Lin, B.-L. Selective formylation and methylation of amines using carbon dioxide and hydrosilane catalyzed by alkali-metal carbonates. ACS Catal., 2016, 6(11), 7876-7881.
[http://dx.doi.org/10.1021/acscatal.6b01856]
[161]
Zhu, D-Y.; Fang, L.; Han, H.; Wang, Y.; Xia, J-B. Reductive CO2 fixation via tandem C–C and C–N bond formation: Synthesis of spiro-indolepyrrolidines. Org. Lett., 2017, 19(16), 4259-4262.
[http://dx.doi.org/10.1021/acs.orglett.7b01906] [PMID: 28777585]
[162]
Li, G.; Chen, J.; Zhu, D-Y.; Chen, Y.; Xia, J-B. DBU-catalyzed selective N-methylation and N-formylation of amines with CO2 and polymethylhydrosiloxane. Adv. Synth. Catal., 2018, 360, 2364-2369.
[http://dx.doi.org/10.1002/adsc.201800140]
[163]
Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 187-190.
[http://dx.doi.org/10.1002/anie.201105516] [PMID: 21960366]
[164]
Blondiaux, E.; Pouessel, J.; Cantat, T. Carbon dioxide reduction to methylamines under metal-free conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(45), 12186-12190.
[http://dx.doi.org/10.1002/anie.201407357] [PMID: 25243949]
[165]
Das Neves Gomes, C.; Blondiaux, E.; Thuéry, P.; Cantat, T. Metal-free reduction of CO2 with hydroboranes: Two efficient pathways at play for the reduction of CO2 to methanol. Chemistry, 2014, 20(23), 7098-7106.
[http://dx.doi.org/10.1002/chem.201400349] [PMID: 24771681]
[166]
Chen, W-C.; Shen, J-S.; Jurca, T.; Peng, C-J.; Lin, Y-H.; Wang, Y-P.; Shih, W-C.; Yap, G.P.A.; Ong, T-G. Expanding the ligand framework diversity of carbodicarbenes and direct detection of boron activation in the methylation of amines with CO2. Angew. Chem. Int. Ed. Engl., 2015, 54(50), 15207-15212.
[http://dx.doi.org/10.1002/anie.201507921] [PMID: 26489967]
[167]
Eschweiler, W. Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd. Ber. Dtsch. Chem. Ges., 1905, 38(1), 880-882.
[http://dx.doi.org/10.1002/cber.190503801154]
[168]
Clarke, H.T.; Gillespie, H.B.; Weisshaus, S.Z. The action of formaldehyde on amines and amino acids. J. Am. Chem. Soc., 1933, 55(11), 4571-4587.
[http://dx.doi.org/10.1021/ja01338a041]
[169]
Staple, E.; Wagner, E.C. A study of the Wallach reaction for alkylation of amines by action of aldehydes or ketones and formic acid. J. Org. Chem., 1949, 14(4), 559-578.
[http://dx.doi.org/10.1021/jo01156a010]
[170]
Xu, G.; Chen, B.; Guo, B.; He, D.; Yao, S. Detection of intermediates for the Eschweiler-Clarke reaction by liquid-phase reactive desorption electrospray ionization mass spectrometry. Analyst (Lond.), 2011, 136(11), 2385-2390.
[http://dx.doi.org/10.1039/c0an00879f] [PMID: 21491029]
[171]
Underwood, R.P.; Carr, R.V.C. Reaction pathways in the catalytic reductive N-methylation of polyamines, in Catalysis of Organic Reactions. Michael E. Ford (Editor), 2000, pp. 267-278.
[172]
Orechoff, A.; Norkina, S. Über die alkaloide von anabasis aphylla, IV. Mitteil. über N‐alkyl‐derivate des anabasins. Sowie über das angebliche vorkommen von methyl‐anabasin in anabasis aphylla. Chem. Ber., 1932, 65(5), 724-729.
[http://dx.doi.org/10.1002/cber.19320650511]
[173]
Lindeke, B.; Anderson, E.; Jenden, D.J. Specific deuteromethylation by the Eschweiler-Clarke reaction. Synthesis of differently labelled variants of trimethylamine and their use for the preparation of labelled choline and acetylcholine. Biomed. Mass Spectrom., 1976, 3(5), 257-259.
[http://dx.doi.org/10.1002/bms.1200030514] [PMID: 974243]
[174]
Tarpey, W.; Hauptmann, H.; Tolbert, B.M.; Rapoport, H. The preparation of demerol-N-methyl-C14 by reductive methylation1. J. Am. Chem. Soc., 1950, 72(11), 5126-5127.
[http://dx.doi.org/10.1021/ja01167a086]
[175]
Harding, J.R.; Jones, J.R.; Lub, S-Y.; Wood, R. Development of a microwave-enhanced isotopic labeling procedure based on the Eschweiler-Clarke methylation reaction. Tetrahedron Lett., 2002, 43(52), 9487-9488.
[http://dx.doi.org/10.1016/S0040-4039(02)02455-3]
[176]
Dietrich, B.; Dilworth, B.; Lehn, J.M.; Souchez, J.P.; Cesario, M.; Guilhem, J.; Pascard, C. Anion cryptates - Synthesis, crystal-structures, and complexation constants of fluoride and chloride inclusion complexes of polyammonium macrobicyclic ligands. Helv. Chim. Acta, 1996, 79(3), 569-587.
[http://dx.doi.org/10.1002/hlca.19960790302]
[177]
Derossi, S.; Farrell, D.T.; Harding, C.J.; McKee, V.; Nelson, J. N-methylation of macrobicycles reduces encapsulation ability. Dalton Trans., 2007, (18), 1762-1772.
[http://dx.doi.org/10.1039/b617907j] [PMID: 17471371]
[178]
Tirumalai, P.S.; Shakleya, D.M.; Gannett, P.M.; Callery, P.S.; Bland, T.M.; Tracy, T.S. Conversion of methamphetamine to N-methyl-methamphetamine in formalin solutions. J. Anal. Toxicol., 2005, 29(1), 48-53.
[http://dx.doi.org/10.1093/jat/29.1.48] [PMID: 15808013]
[179]
Man, N.Y.T.; Li, W.; Stewart, S.G.; Wu, X-F. Transition metal-free methylation of amines with formaldehyde as the reductant and methyl source. Chimia (Aarau), 2015, 69(6), 345-347.
[http://dx.doi.org/10.2533/chimia.2015.345] [PMID: 26507480]
[180]
Godfrey, N.B. Methylation of primary and secondary amines using a small stoichiometric excess of formaldehyde and adding a small stoichiometric excess of formic acid last. US Patent, 3210349A Oct. 5, 1965.
[181]
Shirai, H.; Yashiro, T.; Aoyama, T. Synthesis of spiro [4-hydroxycyclo-alkane-1,4′-2′,3′-dihydro-6′-methoxy-2′-methyl-1-1′H-isoquinoline] derivatives under the conditions of Eschweiler-Clarke reaction. Yakugaku Zasshi, 1970, 90(9), 1135-1139.
[http://dx.doi.org/10.1248/yakushi1947.90.9_1135] [PMID: 5529835]
[182]
Pine, S.H. The Eschweiler-Clark methylation of amines: An organic chemistry experiment. J. Chem. Educ., 1968, 45(2), 118.
[http://dx.doi.org/10.1021/ed045p118]
[183]
Pine, S.H.; Sanchez, B.L. Formic acid-formaldehyde methylation of amines. J. Org. Chem., 1971, 36(6), 829-832.
[http://dx.doi.org/10.1021/jo00805a022]
[184]
Subbaiah, G.; Sethuram, B.; Mahadevan, E.G.; Rao, T.N. Kinetics of methylation of primary alkyl amine hydrochlorides with formaldehyde formic acid. Indian J. Chem. Sec B 16, 1978, 11, 1009-1011.
[185]
Sudarma, I.M.; Satriani, A.R.; Darmayanti, M.G.N. N-Dimethylation of nitro-eugenol to its new 4-allyl-2-(dimethylamino)-6-methoxyphenol via Eschweiler-Clarke methylation reaction. Asian J. Chem., 2017, 29(4), 867-869.
[http://dx.doi.org/10.14233/ajchem.2017.20339]
[186]
Borch, R.F.; Hassid, A.I. New method for the methylation of amines. J. Org. Chem., 1972, 37(10), 1673-1674.
[http://dx.doi.org/10.1021/jo00975a049]
[187]
Berger, G.; Maziere, M.; Knipper, R.; Prenant, C.; Comar, D. Automated synthesis of 11C-labelled: Imipramine, chloropromazone nicotine and methionine. Int. J. Appl. Radial. Isor., 1979, 30(7), 393-399.
[http://dx.doi.org/10.1016/0020-708X(79)90049-8] [PMID: 478664]
[188]
Boullais, C.; Oberdorforfer, F.; Sastre, J.; Prenant, C.; Crouzel, C. Synthesis of 11C- suriclone. J. Labelled Comp. Radiopharm., 1985, 22(10), 1081-1086.
[http://dx.doi.org/10.1002/jlcr.2580221011]
[189]
Kaljuste, K.; Undén, A. New method for the synthesis of N-methyl amino acids containing peptides by reductive methylation of amino groups on the solid phase. Int. J. Pept. Protein Res., 1993, 42(2), 118-124.
[http://dx.doi.org/10.1111/j.1399-3011.1993.tb00487.x] [PMID: 8407105]
[190]
Mulholland, G.K.; Jewett, D.M.; Toorongian, S.A. Routine synthesis of N-[11C-methyl]scopolamine by phosphite mediated reductive methylation with [11C]formaldehyde. Int. J. Rad. Appl. Instrum. [A], 1988, 39(5), 373-379.
[http://dx.doi.org/10.1016/0883-2889(88)90065-2] [PMID: 2840412]
[191]
Bhattacharyya, S.; Chatterjee, A.; Duttachowdhury, S.K. Use of zinc borohydride in reductive amination: An efficient and mild method for N-methylation of amines. J. Chem. Soc., Perkin Trans. 1, 1994, (1), 1-2.
[http://dx.doi.org/10.1039/p19940000001]
[192]
Bhattacharyya, S. Borohydride reductions in dichloromethane: A convenient, environmentally compatible procedure for the methylation of amines. Synth. Commun., 1995, 25(14), 2061-2069.
[http://dx.doi.org/10.1080/00397919508015887]
[193]
Alinezhad, H.; Tajbakhsh, M.; Zamani, R. Efficient and mild procedure for reductive methylation of amines using N-methylpiperidine zinc borohydride. Synth. Commun., 2006, 36(23), 3609-3615.
[http://dx.doi.org/10.1080/00397910600943667]
[194]
Alinezhad, H.; Tajbakhsh, M.; Fatemeh, S.; Fazli, K. Safe and efficient reductive methylation of primary and secondary amines using N-methylpyrrolidine zinc borohydride. Synth. Commun., 2010, 40(16), 2415-2420.
[http://dx.doi.org/10.1080/00397910903249606]
[195]
da Silva, R.A.; Estevamb, I.H.S.; Bieber, L.W. Reductive methylation of primary and secondary amines and amino acids by aqueous formaldehyde and zinc. Tetrahedron Lett., 2007, 48(43), 7680-7682.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.092]
[196]
Rosenau, T.; Potthast, A.; Röhrling, J.; Hofinger, A.; Sixta, H.; Kosma, P. A solvent-free and formalin-free Eschweiler-Clarke methylation for amines. Synth. Commun., 2002, 32(3), 457-465.
[http://dx.doi.org/10.1081/SCC-120002131]
[197]
Pearsox, D.E.; Bruton, J.D. Reductive methylation of amines. J. Am. Chem. Soc., 1951, 73(2), 864-864.
[http://dx.doi.org/10.1021/ja01146a522]
[198]
Sorribes, I.; Junge, K.; Beller, M. General catalytic methylation of amines with formic acid under mild reaction conditions. Chemistry, 2014, 20(26), 7878-7883.
[http://dx.doi.org/10.1002/chem.201402124] [PMID: 24889122]
[199]
Pedrajas, E.; Sorribes, I.; Guillamón, E.; Junge, K.; Beller, M.; Llusar, R. Efficient and selective N-methylation of nitroarenes under mild reaction conditions. Chemistry, 2017, 23(53), 13205-13212.
[http://dx.doi.org/10.1002/chem.201702783] [PMID: 28767165]
[200]
Zhu, L.; Wang, L-S.; Li, B.; Li, W.; Fu, B. Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catal. Sci. Technol., 2016, 6(16), 6172-6176.
[http://dx.doi.org/10.1039/C6CY00674D]
[201]
Guyon, C.; Duclos, M-C.; Metay, E.; Lemaire, M. Reductive N-methylation of amines with calcium hydride and Pd/C catalyst. Tetrahedron Lett., 2016, 57(27-28), 3002-3005.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.094]
[202]
Wang, H.; Yuan, H.; Yang, B.; Dai, X.; Xu, S.; Shi, F. Highly selective N-monomethylanilines synthesis from nitroarene and formaldehyde via kinetically excluding of the thermodynamically favorable N,N-dimethylation reaction. ACS Catal., 2018, 8(5), 3943-3949.
[http://dx.doi.org/10.1021/acscatal.8b00116]
[203]
Singh, A.K.; Hwang, Y-H.; Kim, D-P. Heterogeneous PdAg alloy catalyst for selective methylation of aromatic amines with formic acid under an additive- free and solvothermal one-pot condition. NPG Asia Mater, 2015, 22 7e222
[http://dx.doi.org/10.1038/am.2015.116]
[204]
Savourey, S.; Lefèvre, G.; Berthet, J-C.; Cantat, T. Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem. Commun. (Camb.), 2014, 50(90), 14033-14036.
[http://dx.doi.org/10.1039/C4CC05908E] [PMID: 25268489]
[205]
Yu, L.; Zhang, Q.; Li, S-S.; Huang, J.; Liu, Y-M.; He, H-Y.; Cao, Y. Gold-catalyzed reductive transformation of nitro compounds using formic acid: Mild, efficient, and versatile. ChemSusChem, 2015, 8(18), 3029-3035.
[http://dx.doi.org/10.1002/cssc.201500869] [PMID: 26224033]
[206]
Rong, Z.; Zhang, W.; Zhang, P.; Sun, Z.; Du, W.; Wang, Y. One-pot synthesis of N, N-dimethylanilines from nitroarenes with skeletal Cu as chemoselective catalyst. Catal. Commun., 2013, 41, 115-118.
[http://dx.doi.org/10.1016/j.catcom.2013.07.023]
[207]
Qiao, C.; Liu, X-F.; Liu, X.; He, L-N. Copper(II)-catalyzed selective reductive methylation of amines with formic acid: An option for indirect utilization of CO2. Org. Lett., 2017, 19(6), 1490-1493.
[http://dx.doi.org/10.1021/acs.orglett.7b00551] [PMID: 28263072]
[208]
Wang, H.; Huang, Y.; Dai, X.; Shi, F. N-Monomethylation of amines using paraformaldehyde and H2. Chem. Commun. (Camb.), 2017, 53(40), 5542-5545.
[http://dx.doi.org/10.1039/C7CC02314F] [PMID: 28470246]
[209]
Natte, K.; Neumann, H.; Jagadeesh, R.V.; Beller, M. Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nat. Commun., 2017, 8(1), 1344.
[http://dx.doi.org/10.1038/s41467-017-01428-0] [PMID: 29116077]
[210]
Fu, M-C.; Shang, R.; Cheng, W-M.; Fu, Y. Boron-catalyzed N-alkylation of amines using carboxylic acids. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 9042-9046.
[http://dx.doi.org/10.1002/anie.201503879] [PMID: 26150397]
[211]
Zhang, Q.; Fu, M.C.; Yu, H.Z.; Fu, Y.Q.; Fu, M-C.; Yu, H-Z.; Fu, Y. Mechanism of boron-catalyzed N-alkylation of amines with carboxylic acids. J. Org. Chem., 2016, 81(15), 6235-6243.
[http://dx.doi.org/10.1021/acs.joc.6b00778] [PMID: 27441997]
[212]
Buck, J.S.; Baltzly, R. Esters of secondary hydroxyaralkylalkylamines. J. Am. Chem. Soc., 1942, 64(10), 2263-2264.
[http://dx.doi.org/10.1021/ja01262a010]
[213]
Baltzly, R.; Buck, J.S. Amines related to 2,5-dimethoxyphenethylamine. I. J. Am. Chem. Soc., 1940, 62(1), 161-164.
[http://dx.doi.org/10.1021/ja01858a046]
[214]
Baltzly, R. On competition between the Clarke-Eschweiler and Pictet-Spengler reactions. J. Am. Chem. Soc., 1953, 76(23), 6038-6039.
[http://dx.doi.org/10.1021/ja01119a502]
[215]
Castrillón, J.A. Cactus alkaloids. II. Condensation of mescaline with formaldehyde by the Eschweiler-Clarke reaction. J. Am. Chem. Soc., 1952, 74(2), 558-559.
[http://dx.doi.org/10.1021/ja01122a507]
[216]
Cope, A.C.; Burrows, W.D. Cyclization in the course of Clarke-Eschweiler methylation 1. J. Org. Chem., 1965, 30(7), 2163-2165.
[http://dx.doi.org/10.1021/jo01018a011]
[217]
Chen, F-L.; Sung, K. An exception of Eschweiler-Clarke methylation: Cyclocondensation of α-amino amides with formaldehyde and formic acid. J. Heterocycl. Chem., 2004, 41(5), 697-700.
[http://dx.doi.org/10.1002/jhet.5570410507]
[218]
Klutchko, S.; Blankley, C.J.; Fleming, R.W.; Hinkley, J.M.; Werner, A.E.; Nordin, I.; Holmes, A.; Hoefle, M.L.; Cohen, D.M.; Essenburg, A.D.; Kaplan, H.R. Synthesis of novel angiotensin converting enzyme inhibitor quinapril and related compounds. A divergence of structure-activity relationships for non-sulfhydryl and sulfhydryl types. J. Med. Chem., 1986, 29(10), 1953-1961.
[http://dx.doi.org/10.1021/jm00160a026] [PMID: 3020249]
[219]
Rahal, S.; Badache, L. An anomalous Eschweiler-Clarke reaction. Tetrahedron Lett., 1991, 32(31), 3847-3848.
[http://dx.doi.org/10.1016/S0040-4039(00)79393-2]
[220]
Alder, R.W.; Colclough, D.; Mowlam, R.W. Fragmentation during the formic acid/formaldehyde (Eschweiler-Clarke) methylation of polyamines. Tetrahedron Lett., 1991, 32(52), 7755-7758.
[http://dx.doi.org/10.1016/0040-4039(91)80583-R]
[221]
Bobowski, G. 3,4,9,9 A-tetrahydro-1,4-ethano-3,4a-(iminoethano)-4AH-carbazol-2(1H)-one derivatives. 2. Unusual results from Eschweiler-Clarke methylation. J. Org. Chem., 1985, 50(7), 929-931.
[http://dx.doi.org/10.1021/jo00207a003]
[222]
Easton, C.J.; Kociuba, K.; Peters, S.C. N-Methylation of carbamate derivatives of α-amino acids. J. Chem. Soc. Chem. Commun., 1991, 1475-1476.
[http://dx.doi.org/10.1039/C39910001475]
[223]
Li, Z-L.; Cai, C. Pd/Ni catalyzed selective N–H/C–H methylation of amides by using peroxides as the methylating reagents via a radical process. Org. Chem. Front., 2017, 4(11), 2207-2210.
[http://dx.doi.org/10.1039/C7QO00625J]
[224]
Xia, Q.; Liu, X.; Zhang, Y.; Chen, C.; Chen, W. Copper-catalyzed N-methylation of amides and O-methylation of carboxylic acids by using peroxides as the methylating reagents. Org. Lett., 2013, 15(13), 3326-3329.
[http://dx.doi.org/10.1021/ol401362k] [PMID: 23789961]
[225]
Xiao, J.; Su, Q.; Dong, W.; Peng, Z.; Zhang, Y.; An, D. Copper-catalyzed oxidative alkylation (methylation) of phosphonamides and phosphinamides using dicumyl peroxide. J. Org. Chem., 2017, 82(18), 9497-9504.
[http://dx.doi.org/10.1021/acs.joc.7b01527] [PMID: 28831800]
[226]
Sakamoto, R.; Sakurai, S.; Maruoka, K. Alkylsilyl peroxides as alkylating agents in the copper‐catalyzed selective mono‐N‐alkylation of primary amides and arylamines. Chemistry, 2017, 23(38), 9030-9033.
[http://dx.doi.org/10.1002/chem.201702217] [PMID: 28523837]
[227]
Sakamoto, R.; Sakurai, S.; Maruoka, K. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides. Chem. Commun. (Camb.), 2017, 53(48), 6484-6487.
[http://dx.doi.org/10.1039/C7CC02910A] [PMID: 28569900]
[228]
Hepp, P. Ueber monomethylanilin. Ber. Dtsch. Chem. Ges., 1877, 10(1), 327-329.
[http://dx.doi.org/10.1002/cber.18770100196]
[229]
Pictet, A.; Crépieux, P. Ueber alkylformanilide. Ber. Dtsch. Chem. Ges., 1888, 21(1), 1106-1111.
[http://dx.doi.org/10.1002/cber.188802101210]
[230]
Hinsberg, O. Ueber einige benzolsulfamide und gemischte secundäre amine. Justus Liebigs Ann. Chem., 1891, 265(2), 178-192.
[http://dx.doi.org/10.1002/jlac.18912650203]
[231]
Thielepape, E. Über die N‐methylierung von acetaniliden. Ber. Dtsch. Chem. Ges., 1935, 68(5), 751-753.
[http://dx.doi.org/10.1002/cber.19350680502]
[232]
Pachter, I.J.; Kloetzel, M.C. Methylation of some amides in acetone. J. Am. Chem. Soc., 1952, 74(5), 1321-1322.
[http://dx.doi.org/10.1021/ja01125a053]
[233]
Md Abdur Rauf, S.; Arvidsson, P.I.; Albericio, F.; Govender, T.; Maguire, G.E.; Kruger, H.G.; Honarparvar, B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org. Biomol. Chem., 2015, 13(39), 9993-10006.
[http://dx.doi.org/10.1039/C5OB01565K] [PMID: 26289381]
[234]
White, T.R.; Renzelman, C.M.; Rand, A.C.; Rezai, T.; McEwen, C.M.; Gelev, V.M.; Turner, R.A.; Linington, R.G.; Leung, S.S.F.; Kalgutkar, A.S.; Bauman, J.N.; Zhang, Y.; Liras, S.; Price, D.A.; Mathiowetz, A.M.; Jacobson, M.P.; Lokey, R.S. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol., 2011, 7(11), 810-817.
[http://dx.doi.org/10.1038/nchembio.664] [PMID: 21946276]
[235]
Malkov, A.V.; Vranková, K.; Cerný, M.; Kocovský, P. On the selective N-methylation of BOC-protected amino acids. J. Org. Chem., 2009, 74(21), 8425-8427.
[http://dx.doi.org/10.1021/jo9016293] [PMID: 19821609]
[236]
Das, B.C.; Géro, S.D.; Lederer, E. N-methylation of N-acyl oligopeptides. Biochem. Biophys. Res. Commun., 1967, 29(2), 211-215.
[http://dx.doi.org/10.1016/0006-291X(67)90589-X] [PMID: 6066281]
[237]
Coggins, J.R.; Benoiton, N.L. Synthesis of N-methylamino acid derivatives from amino acid derivatives using sodium hydride/methyl iodide. Can. J. Chem., 1971, 49, 1968-1971.
[http://dx.doi.org/10.1139/v71-317]
[238]
McDeromott, J.R.; Benoiton, N.L. N-Methylamino acids in peptide synthesis. 11. A new synthesis of N-benzyloxycarbonyl, N-methylamino acids. Can. J. Chem., 1973, 51, 1915-1019.
[http://dx.doi.org/10.1139/v73-286]
[239]
Cheung, S.T.; Benoiton, N.L. N-Methylamino acids in peptide synthesis. V. The synthesis of N-tert- butyloxycarbonyl, N-methylamino acids by N-methylation. Can. J. Chem., 1977, 55, 906-910.
[http://dx.doi.org/10.1139/v77-125]
[240]
Cheung, S.T.; Benoiton, N.L. N-Methylamino acids in peptide synthesis. VII. Studies on the enantiomeric purity of N-methylamino acids prepared by various procedures. Can. J. Chem., 1977, 55, 916-921.
[http://dx.doi.org/10.1139/v77-127]
[241]
Stodulski, M.; Mlynarski, J. Synthesis of N-alkyl-N-methyl amino acids. Scope and limitations of base-induced N-alkylation of Cbz-amino acids. Tetrahedron Asymmetry, 2008, 19(8), 970-975.
[http://dx.doi.org/10.1016/j.tetasy.2008.03.025]
[242]
Olsen, R.K. A convenient synthesis of protected N-methylamino acid derivatives. J. Org. Chem., 1970, 35(6), 1912-1915.
[http://dx.doi.org/10.1021/jo00831a042] [PMID: 5446983]
[243]
Ramasamy, K.; Olsen, R.K.; Emery, T. N-Methylation of O-benzyl-α-N-(alkoxycarbonyl) α-amino acid hydroxamate derivatives. J. Org. Chem., 1981, 46(26), 5438-5441.
[http://dx.doi.org/10.1021/jo00339a047]
[244]
Prashad, M.; Har, D.; Hu, B.; Kim, H-Y.; Repic, O.; Blacklock, T.J. An efficient and practical N-methylation of amino acid derivatives. Org. Lett., 2003, 5(2), 125-128.
[http://dx.doi.org/10.1021/ol0268440] [PMID: 12529121]
[245]
Kizuka, H.; Elmaleh, D.R. Selective monomethylation of the primary amine function using [11C]CH3I and the N-trifluoroacetyl derivative: Preparation of N-[11C-methyl]chlorphentermine. Nucl. Med. Biol., 1993, 20(2), 239-242.
[http://dx.doi.org/10.1016/0969-8051(93)90121-A] [PMID: 8448579]
[246]
Johnstone, R.A.W.; Payling, W.; Thomas, C. A rapid method of N-alkylation of amines. J. Chem. Soc. C, 1969, (17), 2223-2224.
[http://dx.doi.org/10.1039/j39690002223]
[247]
Curti, E.; de Britto, D.; Campana‐Filho, S.P. Methylation of chitosan with iodomethane: Effect of reaction conditions on chemoselectivity and degree of substitution. Macromol. Biosci., 2003, 3(10), 571-753.
[http://dx.doi.org/10.1002/mabi.200300030]
[248]
Chiappe, C.; Piccioli, P.; Pieraccini, D. Selective N-alkylation of anilines in ionic liquids. Green Chem., 2006, 8(3), 277-281.
[http://dx.doi.org/10.1039/B509851C]
[249]
Cardullo, F.; Donati, D.; Fusillo, V.; Merlo, G.; Paio, A.; Salaris, M.; Solinas, A.; Taddei, M. Parallel protocol for the selective methylation and alkylation of primary amines. J. Comb. Chem., 2006, 8(6), 834-840.
[http://dx.doi.org/10.1021/cc060060m] [PMID: 17096572]
[250]
Peng, Y.; Liu, H.; Tang, M.; Cai, L.; Pike, V. Highly efficient N-monomethylation of primary aryl amines. Chin. J. Chem., 2009, 27(7), 1339-1344.
[http://dx.doi.org/10.1002/cjoc.200990224]
[251]
Wawzonek, S.; McKillip, W.; Peterson, C.J. N-Methylethylamine. Org. Synth., 1964, 44, 75.
[http://dx.doi.org/10.15227/orgsyn.044.0075]
[252]
Drozd, J. Chemical derivatization in gas chromatography. Series of Journal of Chromatography; Elsevier Scientific Publishing Company: Amsterdam, 1985.
[253]
Martin, H.F.; Driscoll, J.L. Gas chromatographic identification and determination of barbiturates. Anal. Chem., 1966, 38(2), 345-346.
[http://dx.doi.org/10.1021/ac60234a045]
[254]
Dünges, W.; Bergheim-lrps, E.E. A new methylation method for the gas chromatography of barbituric acids. Anal. Lett., 1973, 6(3), 185-195.
[http://dx.doi.org/10.1080/00032717308062197]
[255]
Rose, K.D.; Francisco, M.A. Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy. Energy Fuels, 1987, 1(3), 233-239.
[http://dx.doi.org/10.1021/ef00003a001]
[256]
Palmer, M.H.; Findlay, R.H.; Kennedy, S.M.F.; McIntyre, P.S. Reactivity of indazoles and benzotriazole towards N-methylation and analysis of the 1H nuclear magnetic resonance spectra of indazoles and benzotriazoles. J. Chem. Soc., Perkin Trans. 2, 1975, (15), 1695-1700.
[http://dx.doi.org/10.1039/p29750001695]
[257]
Benson, R.E.; Cairns, T.L. Chemical reactions of caprolactam. J. Am. Chem. Soc., 1948, 70(6), 2115-2118.
[http://dx.doi.org/10.1021/ja01186a035]
[258]
Kashima, C.; Harada, K.; Omote, Y. The influence of a base on the methylation of aminoalcohols. Can. J. Chem., 1985, 63, 288-290.
[http://dx.doi.org/10.1139/v85-048]
[259]
Voskresensky, S.; Makosza, M. Selective one-pot N-monomethylation of 2-nitroanilines under Ptc conditions. Synth. Commun., 2000, 30(19), 3523-3526.
[http://dx.doi.org/10.1080/00397910008087265]
[260]
Jiang, X.; Wang, C.; Wei, Y.; Xue, D.; Liu, Z.; Xiao, J. A general method for N-methylation of amines and nitro compounds with dimethylsulfoxide. Chemistry, 2014, 20(1), 58-63.
[http://dx.doi.org/10.1002/chem.201303802] [PMID: 24327323]
[261]
Atkinson, B.; Williams, J.M.J. Dimethylsulfoxide as an N-methylation reagent for amines and aromatic nitro compounds. ChemCatChem, 2014, 6(7), 1860-1862.
[http://dx.doi.org/10.1002/cctc.201400015]
[262]
Coox, J.G.H.; Riley, C.; Nunn, R.F.; Budgen, D.E. Gas chromatography of methyl derivatives of some barbiturates. J. Chromatogr. A, 1961, 6, 182-185.
[http://dx.doi.org/10.1016/S0021-9673(61)80238-0]
[263]
Krasnov, K.A.; Slesarev, V.I.; Zakharov, A.P.; Grigor’eva, É.G. Solvation effects in the methylation of barbituric acid and its derivatives by diazomethane. Chem. Heterocycl. Compd., 1987, 23(11), 1218-1221.
[http://dx.doi.org/10.1007/BF00479373]
[264]
Di Gioia, M.L.; Leggio, A.; Le Pera, A.; Liguori, A.; Napoli, A.; Siciliano, C.; Sindona, G. “One-pot” methylation of N-Nosyl-α-amino acid methyl esters with diazomethane and their coupling to prepare N-methyl dipeptides. J. Org. Chem., 2003, 68(19), 7416-7421.
[http://dx.doi.org/10.1021/jo034233v] [PMID: 12968894]
[265]
Stevenson, G.W. On-column methylation of barbituric acids. Anal. Chem., 1966, 38(13), 1948-1949.
[http://dx.doi.org/10.1021/ac50155a076] [PMID: 5977855]
[266]
MacGee, J. Determination of nucleic acid base ratios by gas-liquid chromatography. Anal. Biochem., 1966, 14(2), 305-314.
[http://dx.doi.org/10.1016/0003-2697(66)90141-2] [PMID: 5939868]
[267]
Faerber, H.; Schoeler, H.F. Gas chromatographic determination of carbamate pesticides after flash-heater methylation with trimethylsulfonium hydroxide. J. Agric. Food Chem., 1993, 41(2), 217-220.
[http://dx.doi.org/10.1021/jf00026a014]
[268]
González, I.; Mosquera, J.; Guerrero, C.; Rodríguez, R.; Cruces, J. Selective monomethylation of anilines by Cu(OAc)2-promoted cross-coupling with MeB(OH)2. Org. Lett., 2009, 11(8), 1677-1680.
[http://dx.doi.org/10.1021/ol802882k] [PMID: 19354317]
[269]
Gupta, S.; Chaudhary, P.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Copper promoted N-alkylation of sulfoximines with alkylboronic acid under mild conditions. Org. Biomol. Chem., 2017, 15(40), 8493-8498.
[http://dx.doi.org/10.1039/C7OB02234D] [PMID: 28952646]
[270]
Adima, A.; Bied, C.; Moreau, J.J.E.; Man, M.W.C. Facile cleavage of Si-C bonds during the sol-gel hydrolysis of aminomethyltrialkoxysilanes - A new method for the methylation of primary amines. Eur. J. Org. Chem., 2004, 2004(12), 2582-2588.
[http://dx.doi.org/10.1002/ejoc.200400079]
[271]
Asai, S.; Ban, K.; Monguchi, Y.; Sajiki, H.; Sawama, Y. Selective N-monoalkylation of amide derivatives with trialkyl phosphates. Synlett, 2018, 29(03), 322-325.
[http://dx.doi.org/10.1055/s-0036-1591494]
[272]
Miller, S.C.; Scanlan, T.S. Site-selective N-methylation of peptides on solid support. J. Am. Chem. Soc., 1997, 119(9), 2301-2302.
[http://dx.doi.org/10.1021/ja9635443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy