Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

The Anti-infective Potential of Hydroalcoholic Extract of Phyllanthus emblica Seeds Against Selected Human-pathogenic Bacteria

Author(s): Pooja Patel, Chinmayi Joshi and Vijay Kothari*

Volume 20, Issue 5, 2020

Page: [672 - 692] Pages: 21

DOI: 10.2174/1871526519666190821154926

Price: $65

Abstract

Introduction: In the context of the global threat of antimicrobial resistance (AMR) among bacterial pathogens against conventional bactericidal antibiotics, investigation on complementary/ alternative approaches to manage bacterial infections is warranted. The present study aimed at investigating the anti-pathogenic potential of Phyllanthus emblica seed extract (PESE) against four different pathogenic bacteria.

Methods: Hydroalcoholic extract of P. emblica seeds was tested for its possible in vitro quorummodulatory potential against Chromobacterium violaceum, Serratia marcescens, Pseudomonas aeruginosa, and Staphylococcus aureus through broth dilution assay. In vivo efficacy of PESE was assayed employing Caenorhabditis elegans as the model host for these four pathogens.

Results: PESE was found to exert in vitro quorum-modulatory effect on C. violaceum, S. marcescens, P. aeruginosa, and S. aureus at ≥50 μg/mL. This extract could curb the haemolytic activity of all the four test bacteria by 23-65%, inhibit biofilm formation, and was also able to modulate their antibiotic susceptibility (AS) and catalase activity. Susceptibility of P. aeruginosa and S. aureus to lysis by human serum was enhanced under the influence of this extract by 23% and 49%, respectively. Repeated exposure of both these notorious pathogens to PESE did not induce resistance in them. In vivo assay confirmed the anti-virulence effect of this extract in the C. elegans host, wherein the nematode host challenged with the PESE-treated pathogenic bacteria scored better survival. PESE also displayed notable prebiotic potential by promoting the growth of three probiotic strains.

Conclusion: To the best of our awareness, this is the first report on the quorum-modulatory potential of P. emblica seed extract, validating its anti-infective potential and prebiotic property.

Keywords: Antimicrobial resistance (AMR), antibiotic susceptibility (AS), biofilm, post extract effect (PEE), quorum sensing (QS), hydroalcoholic extract, P. emblica.

[1]
Runcie, H. Infection in a pre-antibiotic era. J. Anc. Dis. Prev. Rem., 2015, 3, 125.
[http://dx.doi.org/10.4172/2329-8731.1000125]
[2]
Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3078-3088.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.017] [PMID: 25724815]
[3]
Kothari, V.; Joshi, C.; Patel, P. Alternatives to Conventional Antimicrobials: Exploring New Strategies. In: Resistance to Antibiotics: Are we prepared to Handle This Growing Ghost? (ed: Ashima Bhardwaj), OMICS Group eBooks, USA. , 2017.
[4]
Jain, R.; Pandey, R.; Mahant, R.N.; Rathore, D.S. A review on medicinal importance of Emblica officinalis. Int. J. Pharm. Sci. Res., 2015, 6(1), 72-84.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(1).72-84]
[5]
Dasaroju, S.; Gottumukkala, K.M. Current trends in the research of Emblica officinalis (amla): a pharmacological perspective. Int. J. Pharm. Sci. Rev. Res., 2014, 24(2), 150-159.
[6]
Balakumar, S.; Mahalakshmi, T.; Jeyanthi, A. Inhibition of N-Acyl homoserine lactone mediated quorum sensing in Pseudomonas aeruginosa by Phyllanthus emblica and Quercus infectoria. J. Pharm. Sci. Res., 2010, 2(8), 521-526.
[7]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[8]
Devescovi, G.; Kojic, M.; Covaceuszach, S.; Cámara, M.; Williams, P.; Bertani, I.; Subramoni, S.; Venturi, V. Negative regulation of violacein biosynthesis in Chromobacterium violaceum. Front. Microbiol., 2017, 8(8), 349.
[http://dx.doi.org/10.3389/fmicb.2017.00349] [PMID: 28326068]
[9]
Van Houdt, R.; Givskov, M.; Michiels, C.W. Quorum sensing in Serratia. FEMS Microbiol. Rev., 2007, 31(4), 407-424.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00071.x] [PMID: 17459113]
[10]
Adonizio, A.; Kong, K.F.; Mathee, K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother., 2008, 52(1), 198-203.
[http://dx.doi.org/10.1128/AAC.00612-07] [PMID: 17938186]
[11]
Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015, 6(1), 26-41.
[http://dx.doi.org/10.1007/s13238-014-0100-x] [PMID: 25249263]
[12]
Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.H.L.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.; Otto, M. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell, 2008, 32(1), 150-158.
[http://dx.doi.org/10.1016/j.molcel.2008.08.005] [PMID: 18851841]
[13]
Liu, G.Y.; Nizet, V. Color me bad: microbial pigments as virulence factors. Trends Microbiol., 2009, 17(9), 406-413.
[http://dx.doi.org/10.1016/j.tim.2009.06.006] [PMID: 19726196]
[14]
Sarvaiya, N.; Kothari, V. Audible sound in form of music can influence microbial growth, metabolism and antibiotic susceptibility. J. Appl. Biotechnol. Bioeng., 2017, 2(6), 212-219.
[http://dx.doi.org/10.1101/044776]
[15]
Houghton, P.; Raman, A. Laboratory Handbook for the Fractionation of Natural Extracts; Chapman and Hall: London, UK, 2016, p. 18.
[16]
Patel, P.; Joshi, C.; Palep, H.; Kothari, V. Anti-infective potential of a quorum modulatory polyherbal extract (Panchvalkal) against certain pathogenic bacteria. J. Ayurveda Integr. Med., In press
[http://dx.doi.org/10.1016/j.jaim.2017.10.012]
[17]
Joshi, C.; Kothari, V.; Patel, P. Importance of selecting appropriate wavelength, while quantifying growth and production of quorum sensing regulated pigments in bacteria. Recent Pat. Biotechnol., 2016, 10(2), 145-152.
[http://dx.doi.org/10.2174/1872208310666160414102848] [PMID: 27076088]
[18]
Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol., 2006, 42(6), 637-641.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01928.x] [PMID: 16706905]
[19]
Pradeep, B.V.; Pradeep, F.S.; Angayarkanni, J.; Palaniswamy, M. Optimization and production of prodigiosin from Serratia marcescens MBB05 using various natural substrates. Asian J. Pharm. Clin. Res., 2013, 6(1), 34-41.
[http://dx.doi.org/10.1016/j.btre.2017.04.001]
[20]
El-Fouly, M.Z.; Sharaf, A.M.; Shahin, A.M.; El-Bialy, H.A.; Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci., 2015, 8(1), 36-48.
[http://dx.doi.org/10.1016/j.jrras.2014.10.007]
[21]
Unni, K.; Priji, P.; Geoffroy, V.; Doble, M.; Benjamin, S. Pseudomonas aeruginosa BUP2—A novel strain isolated from malabari goat produces Type 2 pyoverdine. Adv. Biosci. Biotechnol., 2014, 5(11), 874-885.
[http://dx.doi.org/10.4236/abb.2014.511102]
[22]
Song, Y.; Liu, C.I.; Lin, F.Y.; No, J.H.; Hensler, M.; Liu, Y.L.; Jeng, W.Y.; Low, J.; Liu, G.Y.; Nizet, V.; Wang, A.H.; Oldfield, E. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem., 2009, 52(13), 3869-3880.
[http://dx.doi.org/10.1021/jm9001764] [PMID: 19456099]
[23]
Chang, C.Y.; Krishnan, T.; Wang, H.; Chen, Y.; Yin, W.F.; Chong, Y.M.; Tan, L.Y.; Chong, T.M.; Chan, K.G. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci. Rep., 2014, 4, 7245.
[http://dx.doi.org/10.1038/srep07245] [PMID: 25430794]
[24]
McClean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.M.; Camara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; Stewart, G.S.; Williams, P. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997, 143(Pt 12), 3703-3711.
[http://dx.doi.org/10.1099/00221287-143-12-3703] [PMID: 9421896]
[25]
Shaw, P.D.; Ping, G.; Daly, S.L.; Cha, C.; Cronan, J.E., Jr; Rinehart, K.L.; Farrand, S.K. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6036-6041.
[http://dx.doi.org/10.1073/pnas.94.12.6036] [PMID: 9177164]
[26]
Yue, C.X. Quorum sensing and quorum quenching in selected bacteria isolated from diseased tilapia fish., 2013.
[27]
Neun, B.W.; Ilinskaya, A.N.; Dobrovolskaia, M.A. Analysis of hemolytic properties of nanoparticles. NCL method ITA-1 Version 1.2; Nanotechnology Characterization Laboratory: Frederick, MD, 2015.
[28]
Ferro, T.A.; Araújo, J.M.; Dos Santos Pinto, B.L.; Dos Santos, J.S.; Souza, E.B.; da Silva, B.L.; Colares, V.L.; Novais, T.M.; Filho, C.M.; Struve, C.; Calixto, J.B.; Monteiro-Neto, V.; da Silva, L.C.; Fernandes, E.S. Cinnamaldehyde inhibits Staphylococcus aureus virulence factors and protects against infection in a Galleria mellonella model. Front. Microbiol., 2016, 7, 2052.https://dx.doi.org/10.3389%2Ffmicb.2016.02052
[http://dx.doi.org/10.3389/fmicb.2016.02052] [PMID: 28066373]
[29]
Iwase, T.; Tajima, A.; Sugimoto, S.; Okuda, K.; Hironaka, I.; Kamata, Y.; Takada, K.; Mizunoe, Y. A simple assay for measuring catalase activity: a visual approach. Sci. Rep., 2013, 3, 3081.https://dx.doi.org/10.1038%2Fsrep03081
[http://dx.doi.org/10.1038/srep03081] [PMID: 24170119]
[30]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[31]
Patel, I.; Patel, V.; Thakkar, A.; Kothari, V. Tamarindus indica (Cesalpiniaceae), and Syzygium cumini (Myrtaceae) seed extracts can kill multidrug resistant Streptococcus mutans in Biofilm. J. Nat. Rem., 2013, 13(2), 81-94.
[http://dx.doi.org/10.18311/jnr/2013/101]
[32]
Trafny, E.A.; Lewandowski, R.; Zawistowska-Marciniak, I.; Stępińska, M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J. Microbiol. Biotechnol., 2013, 29(9), 1635-1643.
[http://dx.doi.org/10.1007/s11274-013-1326-0] [PMID: 23515965]
[33]
Hui, Y.W.; Dykes, G.A. Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts. J. Food Prot., 2012, 75(8), 1507-1511.
[http://dx.doi.org/10.4315/0362-028X.JFP-12-062] [PMID: 22856578]
[34]
Eng, S.A.; Nathan, S. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Front. Microbiol., 2015, 6, 290.https://dx.doi.org/10.3389%2Ffmicb.2015.00290
[http://dx.doi.org/10.3389/fmicb.2015.00290] [PMID: 25914690]
[35]
Calabrese, E.J. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep., 2004, 5(Spec No), S37-S40.https://dx.doi.org/10.1038%2Fsj.embor.7400222
[http://dx.doi.org/10.1038/sj.embor.7400222] [PMID: 15459733]
[36]
Ramadan, M.A.; Tawfik, A.F.; Shibl, A.M.; Gemmell, C.G. Post-antibiotic effect of azithromycin and erythromycin on streptococcal susceptibility to phagocytosis. J. Med. Microbiol., 1995, 42(5), 362-366.
[http://dx.doi.org/10.1099/00222615-42-5-362] [PMID: 7752216]
[37]
Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev., 2004, 17(2), 268-280.https://dx.doi.org/10.1128%2FCMR.17.2.268-280.2004
[http://dx.doi.org/10.1128/CMR.17.2.268-280.2004] [PMID: 15084501]
[38]
Ramanuj, K.; Bachani, P.; Kothari, V. In vitro antimicrobial activity of certain plant products/seed extracts against multidrug resistant Propionibacterium acnes, Malassezia furfur, and aflatoxin producing Aspergillus flavus. Res. Pharm., 2012, 2(3), 22-31.
[39]
Tavernier, S.; Coenye, T. Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qPCR. PeerJ, 2015.3e787
[http://dx.doi.org/10.7717/peerj.787] [PMID: 25755923]
[40]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39.https://dx.doi.org/10.1186%2Fs13073-016-0294-z
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[41]
Rudrappa, T.; Bais, H.P. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J. Agric. Food Chem., 2008, 56(6), 1955-1962.
[http://dx.doi.org/10.1021/jf072591j] [PMID: 18284200]
[42]
Siddiqui, M.F.; Sakinah, M.; Ismail, A.F. The anti-biofouling effect of Piper betle extract against Pseudomonas aeruginosa and bacterial consortium. Desalination, 2012, 288, 24-30.
[http://dx.doi.org/10.1016/j.desal.2011.11.060]
[43]
Samoilova, Z.; Smirnova, G.; Muzyka, N.; Oktyabrsky, O. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microbiol. Res., 2014, 169(4), 307-313.
[http://dx.doi.org/10.1016/j.micres.2013.06.013] [PMID: 23916388]
[44]
Gautam, A.; Shukla, S. Emblica officinalis (Amla) leaf extract potentiates antibacterial activity of some antibiotics. J. Pharmacogn. Phytochem., 2017, 6(2), 233-236.
[45]
Joshi, C.; Patel, P.; Palep, H.; Kothari, V. Validation of the anti-infective potential of a polyherbal ‘Panchvalkal’ preparation, and elucidation of the molecular basis underlining its efficacy against Pseudomonas aeruginosa. BMC Complement. Altern. Med., 2019, 19(1), 19.
[http://dx.doi.org/10.1186/s12906-019-2428-5] [PMID: 30654785]
[46]
Joshi, C.; Patel, P.; Kothari, V. Anti-infective potential of hydroalcoholic extract of Punica granatum peel against gram-negative bacterial pathogens. F1000 Res., 2019, 8, 70.
[http://dx.doi.org/10.12688/f1000research.17430.2] [PMID: 30828441]
[47]
Patel, P.; Joshi, C.; Kothari, V. Antipathogenic potential of a polyherbal wound-care formulation (herboheal) against certain wound-infective gram-negative bacteria. Adv. Pharmacol. Sci., 2019.20191739868
[http://dx.doi.org/10.1155/2019/1739868] [PMID: 30833966]
[48]
Lather, P.; Mohanty, A.K.; Jha, P.; Garsa, A.K. Contribution of cell surface hydrophobicity in the resistance of Staphylococcus aureus against antimicrobial agents. Biochem. Res. Int., 2016.20161091290
[http://dx.doi.org/10.1155/2016/1091290] [PMID: 26966577]
[49]
Krasowska, A.; Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol., 2014, 4(4), 112.
[http://dx.doi.org/10.3389/fcimb.2014.00112] [PMID: 25191645]
[50]
Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; Ye, J.D.; Pati, M.; Vercruysse, M.; Ralifo, P.S.; Allison, K.R.; Khalil, A.S.; Ting, A.Y.; Walker, G.C.; Collins, J.J. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA, 2014, 111(20), E2100-E2109.
[http://dx.doi.org/10.1073/pnas.1401876111] [PMID: 24803433]
[51]
Orf, K.; Cunnington, A.J. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front. Microbiol., 2015, 6, 666.
[http://dx.doi.org/10.3389/fmicb.2015.00666] [PMID: 26175727]
[52]
Kim, H-S.; Lee, S-H.; Byun, Y.; Park, H-D. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci. Rep., 2015, 5(1), 8656.
[http://dx.doi.org/10.1038/srep08656] [PMID: 25728862]
[53]
Gundogan, N.; Yakar, U.A. Siderophore production, serum resistance, hemolytic activity and extended-spectrum β-lactamase-producing klebsiella species isolated from milk and milk products. J. Food Saf., 2007, 27(3), 251-264.
[http://dx.doi.org/10.1111/j.1745-4565.2007.00077.x]
[54]
Mikucionyte, G.; Dambrauskiene, A.; Skrodeniene, E.; Vitkauskiene, A. Biofilm formation and serum susceptibility in Pseudomonas aeruginosa. Cent. Eur. J. Med., 2014, 9(2), 187-192.
[http://dx.doi.org/10.2478/s11536-013-0241-y]
[55]
Kruczek, C.; Qaisar, U.; Colmer-Hamood, J.A.; Hamood, A.N. Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth. MicrobiologyOpen, 2014, 3(1), 64-79.
[http://dx.doi.org/10.1002/mbo3.147] [PMID: 24436158]
[56]
Williams, B.J.; Morlin, G.; Valentine, N.; Smith, A.L. Serum resistance in an invasive, nontypeable Haemophilus influenzae strain. Infect. Immun., 2001, 69(2), 695-705.
[http://dx.doi.org/10.1128/IAI.69.2.695-705.2001] [PMID: 11159957]
[57]
Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev., 2014, 8(16), 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[58]
Wipperman, M.F.; Fitzgerald, D.W.; Juste, M.A.J.; Taur, Y.; Namasivayam, S.; Sher, A.; Bean, J.M.; Bucci, V.; Glickman, M.S. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci. Rep., 2017, 7(1), 10767.
[http://dx.doi.org/10.1038/s41598-017-10346-6] [PMID: 28883399]
[59]
Wilson, M. Microbial inhabitants of humans: their ecology and role in health and disease; Cambridge University Press, 2005.
[60]
Tan, T.G.; Sefik, E.; Geva-Zatorsky, N.; Kua, L.; Naskar, D.; Teng, F.; Pasman, L.; Ortiz-Lopez, A.; Jupp, R.; Wu, H.J.; Kasper, D.L.; Benoist, C.; Mathis, D. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl. Acad. Sci. USA, 2016, 113(50), E8141-E8150.
[http://dx.doi.org/10.1073/pnas.1617460113] [PMID: 27911839]
[61]
Hollebeeck, S.; Larondelle, Y.; Schneider, Y.J.; Alexandrine, D. The Use of Pomegranate (Punica granatum L.) Phenolic compounds as potential natural prevention against IBDs, inflammatory bowel disease - advances in pathogenesis and Management, Dr. Sami Karoui (Ed.), ISBN: 978- 953-307-891-5. , 2012.
[62]
Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[63]
Steinhandler, L.; Peipert, J.F.; Heber, W.; Montagno, A.; Cruickshank, C. Combination of bacterial vaginosis and leukorrhea as a predictor of cervical chlamydial or gonococcal infection. Obstet. Gynecol., 2002, 99(4), 603-607.
[http://dx.doi.org/10.1097/00006250-200204000-00018] [PMID: 12039120]
[64]
Khalkhali, S.; Mojgani, N. Bacteriocinogenic potential and virulence traits of Enterococcus faecium and E. faecalis isolated from human milk. Iran. J. Microbiol., 2017, 9(4), 224-233.
[PMID: 29238458]
[65]
Lodemann, U.; Strahlendorf, J.; Schierack, P.; Klingspor, S.; Aschenbach, J.R.; Martens, H. Effects of the probiotic Enterococcus faecium and pathogenic Escherichia coli strains in a pig and human epithelial intestinal cell model. Scientifica (Cairo), 2015.2015235184
[http://dx.doi.org/10.1155/2015/235184] [PMID: 25883829]
[66]
Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 2010, 76(1), 243-253.
[http://dx.doi.org/10.1128/AEM.01059-09] [PMID: 19854927]
[67]
Bai, J.; Wu, Y.; Wang, X.; Liu, X.; Zhong, K.; Huang, Y.; Chen, Y.; Gao, H. In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus. J. Food Saf., 2018, 38(1)e12416
[http://dx.doi.org/10.1111/jfs.12416]
[68]
Gohari, A.R.; Saeidnia, S.; Mollazadeh, K.; Yassa, N.; Malmir, M.; Shahverdi, A.R. Isolation of a new quinic acid derivative and its antibacterial modulating activity, 2010.
[69]
Rahman, M.M.; Ahmad, S.H.; Mohamed, M.T.M.; Ab Rahman, M.Z. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. ScientificWorldJournal, 2014.2014635240
[http://dx.doi.org/10.1155/2014/635240] [PMID: 25250382]
[70]
Khan, I.; Rahman, H.; Abd El-Salam, N.M.; Tawab, A.; Hussain, A.; Khan, T.A.; Khan, U.A.; Qasim, M.; Adnan, M.; Azizullah, A.; Murad, W.; Jalal, A.; Muhammad, N.; Ullah, R. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC Complement. Altern. Med., 2017, 17(1), 247.
[http://dx.doi.org/10.1186/s12906-017-1766-4] [PMID: 28468660]
[71]
Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[72]
Lamba, A. Antimicrobial activities of aldehydes and ketones produced during rapid volatilization of biogenic oils; Masters Theses, 2007, p. 4578.
[73]
Kothari, V.; Sharma, S.; Shahi, D.; Gajera, D. Molecular mechanisms underlining anti-infective potential of flavonoids., 2017.
[74]
Paczkowski, J.E.; Mukherjee, S.; McCready, A.R.; Cong, J.P.; Aquino, C.J.H.; Kim, H.; Henke, B.R.; Smith, C.D.; Bassler, B.L. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem., 2017, 292(10), 4064-4076.
[http://dx.doi.org/10.1074/jbc.M116.770552] [PMID: 28119451]
[75]
Bisignano, G.; Laganà, M.G.; Trombetta, D.; Arena, S.; Nostro, A.; Uccella, N.; Mazzanti, G.; Saija, A. In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiol. Lett., 2001, 198(1), 9-13.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10611.x] [PMID: 11325546]
[76]
Mehta, B.K.; Nigam, R.; Nigam, V.; Singh, A. Isolation and antimicrobial screening of ten long chain aliphatic compounds from Psidium guajava (Leaves). Asian J. Plant Sci. Res., 2012, 2(3), 318-322.
[77]
Cieśla, L. Biological fingerprinting of herbal samples by means of liquid chromatography. Chromatogr. Res. Int., 2012.
[78]
Giri, L.; Andola, H.C.; Purohit, V.K.; Rawat, M.S.M.; Rawal, R.S.; Bhatt, I.D. Chromatographic and spectral fingerprinting standardization of traditional medicines: an overview as modern tools. Res. J. Phytochem., 2010, 4, 234-241.
[http://dx.doi.org/10.3923/rjphyto.2010.234.241]
[79]
Gupta, P.; Nain, P.; Sidana, J. Antimicrobial and antioxidant activity on Emblica officinalis seed extract. J. Res. Ayurveda Pharm., 2012, 3(4), 591-596.
[80]
Dinesh, M.; Roopan, S.M.; Selvaraj, C.I.; Arunachalam, P. Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, heamolytic and cytotoxic studies. J. Photochem. Photobiol. B, 2017, 167, 64-71.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.012] [PMID: 28039791]
[81]
Vimala, Y.; Rachel, K.V.; Sankar, A.U. Antimicrobial activity of Emblica officinalis seeds on human pathogens. J. Pure Appl. Microbiol., 2009, 3(1), 219-222.
[http://dx.doi.org/10.1016/b978-0-12-375688-6.10077-5]
[82]
Tayel, A.A.; Shaban, S.M.; Moussa, S.H.; Elguindy, N.M.; Diab, A.M.; Mazrou, K.E.; Ghanem, R.A.; El-Sabbagh, S.M. Bioactivity and application of plant seeds’ extracts to fight resistant strains of Staphylococcus aureus. Ann. Agric. Sci., 2018, 63(1), 47-53.
[http://dx.doi.org/10.1016/j.aoas.2018.04.006]
[83]
Wang, Y-Q.; Wu, Z-F.; Ke, G.; Yang, M. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology. Molecules, 2014, 20(1), 430-445.
[http://dx.doi.org/10.3390/molecules20010430] [PMID: 25558855]
[84]
LaSarre, B.; Federle, M.J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev., 2013, 77(1), 73-111.
[http://dx.doi.org/10.1128/MMBR.00046-12] [PMID: 23471618]
[85]
N’guessan, J.D.; Bidié, A.P.; Lenta, B.N.; Weniger, B.; Andre, P.; Guédé-Guina, F. In vitro assays for bioactivity-guided isolation of antisalmonella and antioxidant compounds in Thonningia sanguinea flowers. Afr. J. Biotechnol., 2007, 6(14), 1685-1689.
[86]
Mitani, T.; Mimura, H.; Ikeda, K.; Nishide, M.; Yamaguchi, M.; Koyama, H.; Hayashi, Y.; Sakamoto, H. Process for the purification of cis-p-Coumaric acid by cellulose Column chromatography after the treatment of the trans isomer with ultraviolet irradiation. Anal. Sci., 2018, 34(10), 1195-1199.
[http://dx.doi.org/10.2116/analsci.18P102] [PMID: 30305597]
[87]
Jeon, J.; Kim, J.H.; Lee, C.K.; Oh, C.H.; Song, H.J. The antimicrobial activity of (-)-epigallocatehin-3-gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Ann. Dermatol., 2014, 26(5), 564-569.
[http://dx.doi.org/10.5021/ad.2014.26.5.564] [PMID: 25324647]
[88]
Leonti, M.; Verpoorte, R. Traditional Mediterranean and European herbal medicines. J. Ethnopharmacol., 2017, 199, 161-167.
[http://dx.doi.org/10.1016/j.jep.2017.01.052] [PMID: 28179113]
[89]
Khamees, S.S. Characterization of vaginal discharge among women complaining of genital tract infection. Int. J. Pharm. Life Sci., 2012, 3(10), 1-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy