Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

A Microwave Accelerated Sustainable Approach for the Synthesis of 2-amino-4H-chromenes Catalysed by WEPPA: A Green Strategy

Author(s): Prashant B. Hiremath and Kantharaju Kamanna*

Volume 6, Issue 1, 2019

Page: [30 - 43] Pages: 14

DOI: 10.2174/2213335606666190820091029

Abstract

Background: The agricultural wastes as a source offer an excellent alternative to replace many toxic and environmentally hazardous catalysts, due to their least toxicity, ease of biodegradability, and ability to act as a greener catalytic medium. Some of the agro-waste based catalysts reported are BFE, WERSA, WEB, and WEPBA. 2-Amino-4H-chromene derivatives are promising biologically potent heterocyclic compounds, due to their medicinal applications such as antimicrobial, anti-inflammatory, antibacterial, antiviral, anticancer, antidiuretic, anticoagulant and antianaphylactic activities. The present work describes a microwave accelerated, efficient, eco-friendly and economical approach for the synthesis of 2-amino-4H-chromenes through condensation of substituted arylaldehyde, malononitrile and resorcinol/naphthol catalyzed water extract of pomegranate peel ash (WEPPA) under microwave irradiation. The reaction completed within 3-6 min with good to excellent yield of product isolation. The final product isolated by simple filtration and recrystallization gave a spectroscopically pure form of product and did not require further purification.

Methods: The pomegranate peel ash water extract as an agro-waste derived catalyst was employed under microwave irradiation for the economical synthesis of 2-amino-4H-chromene derivatives.

Results: The reported agro-waste based catalyst was obtained in the absence of external base, additives and solvent-free synthesis of 2-amino-4H-chromene using aryl aldehyde, malononitrile and resorcinol/ naphthol under microwave irradiation. WEPPA acts as a solvent media and catalyst, as it plays a dual role in the synthesis of 2-amino-4H-chromenes.

Conclusion: We established an efficient, simple, agro-waste based catalytic approach for the synthesis of 2-amino-4H-chromene derivatives from the condensation of arylaldehyde, malononitrile and resorcinol/α-naphthol/β-naphthol employing WEPPA as an efficient catalyst under microwave synthesis. The method has found to be a greener, economic and eco-friendly approach for the synthesis of chromene scaffolds. The advantages of the present approach are solvent-free, no external metal, chemical base free, short reaction time and isolated product in good to excellent yields. The catalyst is agro-waste derived, which has abundant natural sources available, thus making the present approach a greener one.

Keywords: Agro-waste, green catalyst, Green chemistry, 2-amino-4H-chromenes, arylaldehyde, malononitrile, resorcinol, microwave accelerated.

Graphical Abstract

[1]
Syamala, M. Recent progress in Three-Component reactions. An update. Org. Prep. Proced. Int., 2009, 41, 1-68.
[2]
Armstrong, R.W.; Combs, A.P.; Tempst, P.A.; Brown, S.D.; Keating, T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res., 1996, 29(3), 123-131.
[3]
Kamijo, S.; Yamamoto, Y. Synthesis of allyl cyanamides and N-cyanoindoles via the palladium-catalyzed three-component coupling reaction. J. Am. Chem. Soc., 2002, 124(40), 11940-11945.
[4]
Khafagy, M.M.; El-Wahas, A.H.F.A.; Eid, F.A.; El-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. II Farmaco, 2002, 57(9), 715-722.
[5]
Hiramoto, K.; Nasuhara, A.; Michikoshi, K.; Kato, T.; Kikugawa, K. DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat. Res., 1997, 395(1), 47-56.
[6]
Kidwai, M.; Saxena, S.; Khan, M.K.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[7]
(a) Martinez, A.G.; Marco, L.J. Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analogues. Bioorg. Med. Chem. Lett., 1997, 7(24), 3165-3170. [bSmith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey.].
(b)I.D.. Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[8]
Mohr, S.J.; Chirigos, M.A.; Fuhrman, F.S.; Pryor, J.W. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res., 1975, 35(12), 3750-3754.
[9]
Foye, W.O. Principi Di ChemicoFarmaceuticPiccin; Padova, 1991, p. 416. bWitte, E.C.; Neubert, P.; Roesch, A.; Ger, O.D.E. Chem. Abstr., 1986, 104224915f
[10]
Konkoy, C.S.; Fisck, D.B.; Cai, S.X.; Lan, N.C.; Keana, J.F.W. PCT. Int. Appl. WO 0075123. 2000. Chem. Abstr. 134, (2001).29313a
[11]
Ellis, G.P.; Weissberger, A.; Taylor, E.C. The chemistry of heterocyclic compounds. Chromenes, Chromanes and Chromeones; Wiley: New York, 1977, p. 13.
[12]
Hafez, E.A.A.; Elnagdi, M.H.; Elagamey, A.G.A.; El-Taweel, F.M.A.A. Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline Derivatives. Heterocycles, 1987, 26(4), 903-907.
[13]
Zhang, A-Q.; Zhang, M.; Chen, H-H.; Chen, J.; Chen, H-Y. Convenient Method for Synthesis of Substituted 2-Amino-2-chromenes. Synth. Commun., 2007, 37(2), 231-235.
[14]
Ren, Y.; Cai, C. Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catal. Commun., 2008, 9(6), 1017-1020.
[15]
Kumar, D.; Reddy, V.B.; Mishra, B.G.; Rana, R.K.; Nadagaouda, M.N.; Varma, R.S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron, 2007, 63(15), 3093-3097.
[16]
Kumar, B.S.; Srinivasulu, N.; Udupi, R.H.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Kumar, P.S. An efficient approach towards three component coupling of one pot reaction for synthesis of functionalized benzopyrans. J. Heterocycl. Chem., 2007, 43, 1691-1693.
[17]
Shanthi, G.; Perumal, P.T. An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tetrahedron Lett., 2007, 48(38), 6785-6789.
[18]
Shaabani, A.; Ghadari, R.; Ghasemi, S.; Pedarpour, M.; Rezayan, A.H.; Sarvary, A.; Ng, S.W. Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives. J. Comb. Chem., 2009, 11(6), 956-959.
[19]
Al-Matar, H.M.; Khalil, K.D.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Chitosan as heterogeneous catalyst in Michael additions: the reaction of cinnamonitriles with active methylene moieties and phenols. ARKIVOC, 2008, 16, 288-301.
[20]
Khurana, J.M.; Nand, B.; Saluja, P. DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3- b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g] chromenes in aqueous medium. Tetrahedron, 2010, 66(30), 5637-5641.
[21]
Naimi-Jamal, M.R.; Mashkouri, S.; Sharifi, A. An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol. Divers., 2010, 14(3), 473-477.
[22]
Dekamin, M.G.; Eslami, M.; Maleki, A. Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron, 2013, 69(3), 1074-1085.
[23]
Eshghi, H.; Damavandi, S.; Zohuri, G.H. Efficient one-pot synthesis of 2-Amino-4H-chromenes catalyzed by ferric hydrogen sulfate and Zr-based catalysts of FI. Synth. React. Inorg. Met., 2011, 41, 1067-1073.
[24]
Ren, Y.F.; Yang, B.; Liao, X.L. The amino side chains do matter: chemoselectivity in the one-pot three-component synthesis of 2-amino-4H-chromenesby supramolecular catalysis with (ACDs) in water. Catal. Sci. Technol., 2016, 6, 4283-4293.
[25]
Safari, J.; Javadian, L. Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem., 2015, 22, 341-348.
[26]
Safari, J.; Zarnegar, Z. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery. J. Mol. Struct., 2014, 1072, 53-60.
[27]
Pourian, E.; Javanshir, S.; Dolatkhah, Z.; Molaei, S.; Maleki, A. Ultrasonic-assisted preparation, characterization, and use of novel biocompatible Core/Shell Fe3O4@GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4H-Pyran Derivatives. ACS Omega, 2018, 3(5), 5012-5020.
[28]
Ballini, R.; Bigi, F.; Conforti, M.L.; Santis, D.D.; Maggi, R.; Oppici, G.; Sartori, G. Multicomponent reactions under clay catalysis. Catal. Today, 2000, 60, 305-309.
[29]
Ghorbani, M.; Noura, S.; Oftadeh, M.; Zolfigol, M.A.; Soleimani, M.H.; Behbodi, K. Preparation of neutral ionic liquid [2-Eim] OAc with dual catalytic-solvent system roles for the synthesis of 2-amino-3-cyano-7-hydroxy-4-(aryl)-4H chromene derivatives. J. Mol. Liq., 2015, 212, 291-300.
[30]
Kundu, S.K.; Bhaumik, A. A triazine-based porous organic polymer: a novel heterogeneous basic organocatalyst for facile one-pot synthesis of 2-amino 4H-chromenes. Rsc Adv., 2015, 5, 32730-32739.
[31]
Chen, L.; Huang, X.J.; Li, Y.Q.; Zhou, M.Y.; Zheng, W.J. A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition. Monatsh. Chem., 2009, 140, 45-47.
[32]
Chen, L.; Li, Y.Q.; Huang, X.J.; Zheng, W.J.N. N-dimethylamino-functionalized basic ionic liquid catalyzed one-pot multicomponent reaction for the synthesis of 4H-benzo[b]pyran derivatives under solvent-free condition. Heteroatom Chem., 2009, 20(2), 91-94.
[33]
Ruijter, E.; Scheffelaar, R.; Orru, R.V. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[34]
Sanchez, L.M.; Thomas, H.J.; Romanelli, G.P. suitable multicomponent organic synthesis using heteropolycompounds as catalysts. Mini Rev. Org. Chem., 2015, 12(2), 115-126.
[35]
Guha, N.R.; Bhattacherjee, D.; Das, P. Solid supported rhodium(0) nanoparticles: an efficient catalyst for chemo- and regio-selective transfer hydrogenation of nitroarenes to anilines under microwave irradiation. Tetrahedron Lett., 2014, 55, 2912-2916.
[36]
Prieto, E.D.J.M.; Rivas, B.; Sa’nchez, J. Natural polymer grafted with syntethic monomer by microwave for water treatment - A Review. Cienc. En. Desarro, 2013, 4, 219.
[37]
Badamali, K.; Luque, R.; Clark, J.H.; Breeden, S.W. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15. Catal. Commun., 2009, 10(6), 1010-1013.
[38]
(a)He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem., 2009, 1, 1768-1773.
(b)Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1,3‐cyclohexanediones and formaldehyde in glycerol: Stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal.,2010, 352, 519-530. cAlonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem.,2010, 12, 1493-1513. (d) Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem.,2011, 13, 2204-2211. (e) Gu, Y.; Jérôme, F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev.,2013, 42(24), 9550-9570. (f) Sun, S.; Bai, R.; Gu, Y. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis. Chemistry, 2014, 20(2), 549-558.
[39]
Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 2003, 22(10), 2280-2292.
[40]
Leitner, W. Green Solvents–Progress in science and application. Green Chem., 2009, 11, 603-603.
[41]
Comerford, J.W.; Ingram, I.D.V.; North, M.; Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem., 2015, 17, 1966-1987.
[42]
Jenkins, B.M.; Bakker, R.R.; Wei, J.B. On the properties of washed straw. Biomass Bioenergy, 1996, 4, 177-200.
[43]
Konwar, M.; Ali, A.A.; Sarma, D. A green protocol for peptide bond formation in WEB. Tetrahedron Lett., 2016, 57(21), 2283-2285.
[44]
Surneni, N.; Barua, N.C.; Saikia, B. Application of natural feedstock extract: the Henry reaction. Tetrahedron Lett., 2016, 57(25), 2814-2817.
[45]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett., 2016, 57(33), 3760-3763.
[46]
Saikia, E.; Bora, S.J. Chetia, B. H2O2 in WERSA: an efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Advances, 2015, 5, 102723-102726.
[47]
Saikia, B.; Borah, P. A new avenue to Dakin reaction in H2O2–WERSA. RSC Advances, 2015, 5, 105583-105586.
[48]
Sarmah, M.; Dewan, A.; Mondal, M.; Thakur, A.J.; Bora, U. Analysis of water extract of waste papaya bark ash and its implications as in situ base in ligand-free recyclable Suzuki-Miyaura coupling reaction. RSC Advances, 2016, 6, 28981-28985.
[49]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. In situ generation of palladium nanoparticles using agro waste and their use as catalyst for copper‐, amine‐ and ligand‐free Sonogashira reaction. Appl. Organomet. Chem., 2017, 31e3646
[50]
Deka, D.C.; Taukdar, N.N. Chemical and spectroscopic investigation of Kolakhar and its commercial importance. Indian J. Tradit. Knowl., 2007, 6, 72-98.
[51]
Ferraz, H.M.C.; Bianco, G.G.; Bombonato, F.I.; Andrade, L.H. Bioreduction of substituted tetralones promoted by Daucus carota root. Quim. Nova, 2008, 31(4), 813-817.
[52]
Lakshmi, C.S.; Reddy, G.R.; Rao, A.B. Asymmetric reduction of heteroaryl methyl ketones using Daucus carota. Green Sus. Chem, 2011, 1(4), 117-122.
[53]
Li, F.; Cui, J.; Qian, X.; Zhang, R.; Xiao, Y. Highly chemoselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalysed by plant cells from a grape (Vitis vinifera L.). Chem. Commun. (Camb.), 2005, 14(14), 1901-1903.
[54]
Bertini, L.M.; Lemos, T.L.G.; Alves, L.A.; Jose, F.Q.; Monte, Q.; Marcos, C.F.; de Oliveira, F.; Conceição, M. Soybean (Glycinemax) as a versatile biocatalyst for organic synthesis. Afr. J. Biotechnol., 2012, 11(30), 7766-7770.
[55]
Deshmukh, M.B.; Patil, S.S.; Jadhav, S.D.; Pawar, P.B. Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group. Synth. Commun., 2012, 42(4), 1177-1183.
[56]
Alvesa, L.A.; Bertinia, L.M.; Bizerraa, A.M.C.; Mattosa, M.C.; Montea, F.J.Q.; Lemosa, T.L.G. Zingiber officinale (GINGER) as an enzyme source for the reduction of carbonyl compounds. Quim. Nova, 2015, 38(4), 483-487.
[57]
Jayachandran, B.; Phukan, P.; Daniel, T.; Sudalai, A. Natural kaolinitic clay: a remarkable catalyst for highly regioselective chlorination of arenes with Cl2 and SO2Cl2. Indian J. Chem., 2006, 45B, 972-975.
[58]
Khezri, S.H. Mohammad, -V.M.; Eftekhari, -S.B, Hashemi, M.M.; Baniasadi, M.H. The efficient synthesis of carbon–carbon double bonds via Knoevenagel condensation using red mud packed in a column. Green Chem. Lett. Rev., 2007, 1, 61-64.
[59]
Gadekar, L.S.; Katkar, S.S.; Mane, S.R.; Arbad, B.R.; Lande, M.K. Scolecite catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Bull. Korean Chem. Soc., 2009, 30(11), 2532.
[60]
Habibi, D.; Nasrollahzadeh, M.; Kamali, T.A. Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the natrolite zeolite as a new and reusable heterogeneous catalyst. Green Chem., 2011, 13, 3499-3504.
[61]
Borse, B.N.; Shukla, S.R.; Sonawane, Y.A. Simple, efficient, and green method for synthesis of trisubstituted electrophilic alkenes using lipase as a biocatalyst. Synth. Commun., 2012, 42, 412-423.
[62]
Kundu, S.K.; Mondal, J.; Bhaumik, A. Tungstic acid functionalized mesoporous SBA-15: a novel heterogeneous catalyst for facile one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. Dalton Trans., 2013, 42(29), 10515-10524.
[63]
Fareghi-Alamdari, R.; Zekri, N.; Mansouri, F. Enhancement of catalytic activity in the synthesis of 2-amino-4H-chromene derivatives using both copper- and cobalt-incorporated magnetic ferrite nanoparticles. Res. Chem. Intermed., 2017, 43(11), 6537-6551.
[64]
Shinde, S.; Damate, S.; Morbale, S.; Patil, M.; Patil, S.S. Aegle marmelos in heterocyclization: greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Advances, 2017, 7, 7315-7328.
[65]
Gong, K.; Wang, H.L.; Fang, D.; Liu, Z.L. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun., 2008, 9(5), 650-653.
[66]
Kidwai, M.; Saxena, S.; Khan, M.K.; Thukral, S.S.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[67]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects., 2017, 11, 25-31.
[68]
Kantharaju, K.; Hiremath, P.B. Khatavi, S.Y. WEB: A green and an efficient catalyst for Knoevenagel condensation under grindstone method. Indian J. Chem., 2019, 58B, 706-713.
[69]
Kantharaju, K.; Hiremath, P.B. One-Pot, green approach synthesis of 2-aryl substituted benzimidazole derivatives catalyzed by water extract of papaya bark ash. Asian J. Chem., 2018, 30(7), 1634-1638.
[70]
Kantharaju, K.; Hiremath, P.B. A green catalytic system for the Knoevenagel condensation using WEPBA. Int. J. Eng. Tech. Sci. and Res., 2017, 4(9), 807-813.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy