Review Article

化学介质的表达与类风湿关节炎疼痛的调节相关

卷 27, 期 36, 2020

页: [6208 - 6218] 页: 11

弟呕挨: 10.2174/0929867326666190816225348

价格: $65

conference banner
摘要

背景:由于自身免疫性的病理学性质,类风湿关节炎(RA)患者的疼痛处理是一个复杂的课题。研究表明,化学介质在中枢神经系统和外周神经系统不同水平疼痛的决定、易感性和调节中发挥着基础性作用,从而产生了有趣的新型分子靶点来缓解RA患者的疼痛。然而,由于类风湿性关节炎疼痛生理的复杂性和多种化学介质,一些研究的结果存在争议。 目的:这项研究的目的是确定能够调节类风湿性关节炎疼痛的化学介质。 方法:在本综述中,我们检索了PubMed、ProQuest、EBSCO和科学引文索引,以评估化学介质在调节RA疼痛方面的表达。 结果:很少有研究强调某些化学介质的表达在类风湿关节炎患者中调节疼痛的重要性。TRPV1、ASIC-3、TDV8的表达在RA中编码离子通道,调节疼痛,RA中的转录因子TNFα、TGF-β1、IL-6、IL-10、IFN-γ、IL-1b、mTOR、p21、caspase 3、EDNRB、CGRPCALCB、CGRP-CALCA、TAC1等也直接参与疼痛感知。 结论:所有化学介质的表达均与RA直接相关,通过复杂的细胞内外信号通路调节疼痛,但转录因子参与调控急性疼痛,而离子通道参与RA慢性疼痛。

关键词: 类风湿性关节炎,疼痛,转录因子,离子通道,化学介质, 伤害感受。

[1]
Loeser, J.D.; Treede, R.D. The Kyoto protocol of IASP basic pain terminology. Pain, 2008, 137(3), 473-477.
[http://dx.doi.org/10.1016/j.pain.2008.04.025] [PMID: 18583048]
[2]
Buskila, D. Genetics of chronic pain states. Best Pract. Res. Clin. Rheumatol., 2007, 21(3), 535-547.
[http://dx.doi.org/10.1016/j.berh.2007.02.011] [PMID: 17602998]
[3]
Fillingim, R.B.; Wallace, M.R.; Herbstman, D.M.; Ribeiro-Dasilva, M.; Staud, R. Genetic contributions to pain: a review of findings in humans. Oral Dis., 2008, 14(8), 673-682.
[http://dx.doi.org/10.1111/j.1601-0825.2008.01458.x] [PMID: 19193196]
[4]
Cortes-Altamirano, J.L.; Olmos-Hernandez, A.; Jaime, H.B.; Carrillo-Mora, P.; Bandala, C.; Reyes-Long, S.; Alfaro-Rodríguez, A. 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr. Neuropharmacol., 2018, 16(2), 210-221.
[http://dx.doi.org/10.2174/1570159X15666170911121027] [PMID: 28901281]
[5]
WHO Scientific Group on the Burden of Musculoskeletal Conditions at the Start of the New Millennium The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ. Tech. Rep. Ser. 2003. 919(i-x), 1-218.
[PMID: 14679827]
[6]
McDougall, J.J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res. Ther., 2006, 8(6), 220.
[http://dx.doi.org/10.1186/ar2069] [PMID: 17118212]
[7]
Phillips, K.; Clauw, D.J. Central pain mechanisms in the rheumatic diseases: future directions. Arthritis Rheum., 2013, 65(2), 291-302.
[http://dx.doi.org/10.1002/art.37739] [PMID: 23045168]
[8]
Fitzcharles, M.A.; Lussier, D.; Shir, Y. Management of chronic arthritis pain in the elderly. Drugs Aging, 2010, 27(6), 471-490.
[http://dx.doi.org/10.2165/11536530-000000000-00000] [PMID: 20524707]
[9]
May, S. Self-management of chronic low back pain and osteoarthritis. Nat. Rev. Rheumatol., 2010, 6(4), 199-209.
[http://dx.doi.org/10.1038/nrrheum.2010.26] [PMID: 20357789]
[10]
Edwards, R.R.; Cahalan, C.; Mensing, G.; Smith, M.; Haythornthwaite, J.A. Pain, catastrophizing and depression in the rheumatic diseases. Nat. Rev. Rheumatol., 2011, 7(4), 216-224.
[http://dx.doi.org/10.1038/nrrheum.2011.2] [PMID: 21283147]
[11]
Heiberg, T.; Kvien, T.K. Preferences for improved health examined in 1,024 patients with rheumatoid arthritis: pain has highest priority. Arthritis Rheum., 2002, 47(4), 391-397.
[http://dx.doi.org/10.1002/art.10515] [PMID: 12209485]
[12]
Hess, A.; Axmann, R.; Rech, J.; Finzel, S.; Heindl, C.; Kreitz, S.; Sergeeva, M.; Saake, M.; Garcia, M.; Kollias, G.; Straub, R.H.; Sporns, O.; Doerfler, A.; Brune, K.; Schett, G. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl. Acad. Sci. USA, 2011, 108(9), 3731-3736.
[http://dx.doi.org/10.1073/pnas.1011774108] [PMID: 21245297]
[13]
Borenstein, D.G.; Hassett, A.L.; Pisetsky, D. Pain management in rheumatology research, training and practice. Clin. Exp. Rheumatol., 2017, 35(5)(Suppl. 107), 2-7.
[PMID: 28967362]
[14]
James, S. Human pain and genetics: some basics. Br. J. Pain, 2013, 7(4), 171-178.
[http://dx.doi.org/10.1177/2049463713506408] [PMID: 26516521]
[15]
Harth, M.; Nielson, W.R. Pain and affective distress in arthritis: relationship to immunity and inflammation. Expert Rev. Clin. Immunol., 2019, 15(5), 541-552.
[http://dx.doi.org/10.1080/1744666x.2019.1573675] [PMID: 30669892]
[16]
Actor, J.K.; Smith, K.C. Translational Inflammation; Perspectives in Translational Cell Biology, 2019, pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-12-813832-8.00001-7]
[17]
Kim, H.; Clark, D.; Dionne, R.A. Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J. Pain, 2009, 10(7), 663-693.
[http://dx.doi.org/10.1016/j.jpain.2009.04.001] [PMID: 19559388]
[18]
Fillingim, R.B. Individual differences in pain: understanding the mosaic that makes pain personal. Pain, 2017, 158(1)(Suppl. 1), S11-S18.
[http://dx.doi.org/10.1097/j.pain.0000000000000775] [PMID: 27902569]
[19]
Waxman, S.G.; Zamponi, G.W. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat. Neurosci., 2014, 17(2), 153-163.
[http://dx.doi.org/10.1038/nn.3602] [PMID: 24473263]
[20]
Ahern, G.P.; Brooks, I.M.; Miyares, R.L.; Wang, X.B. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci., 2005, 25(21), 5109-5116.
[http://dx.doi.org/10.1523/JNEUROSCI.0237-05.2005] [PMID: 15917451]
[21]
Kargbo, R.B. TRPV1 Modulators for the treatment of pain and inflammation. ACS Med. Chem. Lett., 2019, 10(2), 143-144.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00618] [PMID: 30783490]
[22]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[23]
Caterina, M.J.; Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci., 2001, 24, 487-517.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.487] [PMID: 11283319]
[24]
Velisetty, P.; Stein, R.A.; Valdez, S.F.J.; Vásquez, V.; Cordero-Morales, J.F. Expression and purification of the pain receptor TRPV1 for spectroscopic analysis. Biophys. J., 2018, 114(3), 482a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2649]
[25]
Arribas-Blázquez, M.; Olivos-Oré, L.A.; Barahona, M.V.; Sánchez de la Muela, M.; Solar, V.; Jiménez, E.; Gualix, J.; McIntosh, J.M.; Ferrer-Montiel, A.; Miras-Portugal, M.T.; Artalejo, A.R. Overexpression of P2X3 and P2X7 receptors and TRPV1 channels in adrenomedullary chromaffin cells in a rat model of neuropathic pain. Int. J. Mol. Sci., 2019, 20(1), 155.
[http://dx.doi.org/10.3390/ijms20010155] [PMID: 30609840]
[26]
Engler, A.; Aeschlimann, A.; Simmen, B.R.; Michel, B.A.; Gay, R.E.; Gay, S.; Sprott, H. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem. Biophys. Res. Commun., 2007, 359(4), 884-888.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.178] [PMID: 17560936]
[27]
Fan, C.; Chu, X.; Wang, L.; Shi, H.; Li, T. Botulinum toxin type A reduces TRPV1 expression in the dorsal root ganglion in rats with adjuvant-arthritis pain. Toxicon, 2017, 133, 116-122.
[http://dx.doi.org/10.1016/j.toxicon.2017.05.001] [PMID: 28478059]
[28]
Marrone, M.C.; Morabito, A.; Giustizieri, M.; Chiurchiù, V.; Leuti, A.; Mattioli, M.; Marinelli, S.; Riganti, L.; Lombardi, M.; Murana, E.; Totaro, A.; Piomelli, D.; Ragozzino, D.; Oddi, S.; Maccarrone, M.; Verderio, C.; Marinelli, S. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat. Commun., 2017, 8, 15292.
[http://dx.doi.org/10.1038/ncomms15292] [PMID: 28489079]
[29]
Szabó, A.; Helyes, Z.; Sándor, K.; Bite, A.; Pintér, E.; Németh, J.; Bánvölgyi, A.; Bölcskei, K.; Elekes, K.; Szolcsányi, J. Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: in vivo study using gene-deficient mice. J. Pharmacol. Exp. Ther., 2005, 314(1), 111-119.
[http://dx.doi.org/10.1124/jpet.104.082487] [PMID: 15831443]
[30]
Hsieh, W.S.; Kung, C.C.; Huang, S.L.; Lin, S.C.; Sun, W.H. TDAG8, TRPV1 and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci. Rep., 2017, 7(1), 8870.
[http://dx.doi.org/10.1038/s41598-017-09200-6] [PMID: 28827659]
[31]
Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68.
[http://dx.doi.org/10.1016/S0896-6273(02)00908-X] [PMID: 12367506]
[32]
Duo, L.; Hu, L.; Tian, N.; Cheng, G.; Wang, H.; Lin, Z.; Wang, Y.; Yang, Y. TRPV1 gain-of-function mutation impairs pain and itch sensations in mice. Mol. Pain, 2018, 141744806918762031
[http://dx.doi.org/10.1177/1744806918762031] [PMID: 29424270]
[33]
(a) Fernandes, E.S.; Russel, F.A.; Alawi, M.K.; Sand, C.; Liang, L.; Salomon, R.; Bodkin, J.V.; Aubdool, A.A.; Arno, M.; Gentry, C.; Smillie, S.J.; Bevan, S.; Keeble, J.E.; Malcangio, M.; Brain, S.D. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Res. Ther., 2014, 18(7)
[http://dx.doi.org/10.1186/s13075-015-0905-x] [PMID: 26754745]
(b) Engler, A.; Aeschlimann, A.; Simmen, B.R.; Michel, B.A.; Gay, R.E.; Gay, S.; Sprott, H. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem. Biophys. Res. Commun., 2007, 359(4), 884-888.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.178]] [PMID: 17560936]
[34]
Izumi, M.; Ikeuchi, M.; Ji, Q.; Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci., 2012, 19(1), 77.
[http://dx.doi.org/10.1186/1423-0127-19-77] [PMID: 22909215]
[35]
Yen, L.T.; Hsu, Y.C.; Lin, J.G.; Hsieh, C.L.; Lin, Y.W. Role of ASIC3, Nav1.7 and Nav1.8 in electroacupuncture-induced analgesia in a mouse model of fibromyalgia pain. Acupunct. Med., 2018, 36(2), 110-116.
[http://dx.doi.org/10.1136/acupmed-2016-011244] [PMID: 29343477]
[36]
Sluka, K.A.; Price, M.P.; Breese, N.M.; Stucky, C.L.; Wemmie, J.A.; Welsh, M.J. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain, 2003, 106(3), 229-239.
[http://dx.doi.org/10.1016/S0304-3959(03)00269-0] [PMID: 14659506]
[37]
Sluka, K.A.; Radhakrishnan, R.; Benson, C.J.; Eshcol, J.O.; Price, M.P.; Babinski, K. Katherine, Audettee, M.; Yeomans D.C.; Wilson, S.P. ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain, 2007, 129, 102-112.
[http://dx.doi.org/10.1016/j.pain.2006.09.038] [PMID: 17134831]
[38]
Stephan, G.; Huang, L.; Tang, Y.; Vilotti, S.; Fabbretti, E.; Yu, Y.; Nörenberg, W.; Franke, H.; Gölöncsér, F.; Sperlágh, B.; Dopychai, A.; Hausmann, R.; Schmalzing, G.; Rubini, P.; Illes, P. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat. Commun., 2018, 9(1), 1354.
[http://dx.doi.org/10.1038/s41467-018-03728-5] [PMID: 29636447]
[39]
Wu, W.L.; Cheng, C.F.; Sun, W.H.; Wong, C.W.; Chen, C.C. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol. Ther., 2012, 134(2), 127-138.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.009] [PMID: 22233754]
[40]
Deval, E.; Noël, J.; Lay, N.; Alloui, A.; Diochot, S.; Friend, V.; Jodar, M.; Lazdunski, M.; Lingueglia, E. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J., 2008, 27(22), 3047-3055.
[http://dx.doi.org/10.1038/emboj.2008.213] [PMID: 18923424]
[41]
Sluka, K.A.; Rasmussen, L.A.; Edgar, M.M.; O’Donnell, J.M.; Walder, R.Y.; Kolker, S.J.; Boyle, D.L.; Firestein, G.S. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis Rheum., 2013, 65(5), 1194-1202.
[http://dx.doi.org/10.1002/art.37862] [PMID: 23335302]
[42]
Weng, H.J.; Patel, K.N.; Jeske, N.A.; Bierbower, S.M.; Zou, W.; Tiwari, V.; Zheng, Q.; Tang, Z.; Mo, G.C.; Wang, Y.; Geng, Y.; Zhang, J.; Guan, Y.; Akopian, A.N.; Dong, X. Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron, 2015, 85(4), 833-846.
[http://dx.doi.org/10.1016/j.neuron.2014.12.065] [PMID: 25640077]
[43]
Li, C.; Deng, T.; Shang, Z.; Wang, D.; Xiao, Y. Blocking TRPA1 and TNF-α signal improves bortezomib-induced neuropathic pain. Cell. Physiol. Biochem., 2018, 51(5), 2098-2110.
[http://dx.doi.org/10.1159/000495828] [PMID: 30522101]
[44]
Firestein, G.S.; Manning, A.M. Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum., 1999, 42(4), 609-621.
[http://dx.doi.org/10.1002/1529-0131(199904)42:4<609: AID-ANR3>3.0.CO;2-I] [PMID: 10211874]
[45]
McMahon, S.B.; Cafferty, W.B.; Marchand, F. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol., 2005, 192(2), 444-462.
[http://dx.doi.org/10.1016/j.expneurol.2004.11.001] [PMID: 15755561]
[46]
Marchand, F.; Perretti, M.; McMahon, S.B. Role of the immune system in chronic pain. Nat. Rev. Neurosci., 2005, 6(7), 521-532.
[http://dx.doi.org/10.1038/nrn1700] [PMID: 15995723]
[47]
Moalem, G.; Tracey, D.J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Brain Res. Rev., 2006, 51(2), 240-264.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.004] [PMID: 16388853]
[48]
Leung, L.; Cahill, C.M. TNF-α and neuropathic pain-a review. J. Neuroinflammation, 2010, 7(1), 27.
[http://dx.doi.org/10.1186/1742-2094-7-27] [PMID: 20398373]
[49]
DeLeo, J.A.; Colburn, R.W.; Rickman, A.J. Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res., 1997, 759(1), 50-57.
[http://dx.doi.org/10.1016/S0006-8993(97)00209-6] [PMID: 9219862]
[50]
Park, C.K.; Lü, N.; Xu, Z.Z.; Liu, T.; Serhan, C.N.; Ji, R.R. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci., 2011, 31(42), 15072-15085.
[http://dx.doi.org/10.1523/JNEUROSCI.2443-11.2011] [PMID: 22016541]
[51]
Gu, Y.; Yang, D.K.; Spinas, E.; Kritas, S.K.; Saggini, A.; Caraffa, A.; Antinolfi, P.; Saggini, R.; Conti, P. Role of TNF in mast cell neuroinflammation and pain. J. Biol. Regul. Homeost. Agents, 2015, 29(4), 787-791.
[PMID: 26753638]
[52]
Cunha, F.Q.; Poole, S.; Lorenzetti, B.B.; Ferreira, S.H. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br. J. Pharmacol., 1992, 107(3), 660-664.
[http://dx.doi.org/10.1111/j.1476-5381.1992.tb14503.x] [PMID: 1472964]
[53]
Schäfers, M.; Sorkin, L.S.; Sommer, C. Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain, 2003, 104(3), 579-588.
[http://dx.doi.org/10.1016/S0304-3959(03)00115-5] [PMID: 12927630]
[54]
Wagner, R.; Myers, R.R. Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport, 1996, 7(18), 2897-2901.
[http://dx.doi.org/10.1097/00001756-199611250-00018] [PMID: 9116205]
[55]
Woolf, C.J.; Allchorne, A.; Safieh-Garabedian, B.; Poole, S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br. J. Pharmacol., 1997, 121(3), 417-424.
[http://dx.doi.org/10.1038/sj.bjp.0701148] [PMID: 9179382]
[56]
Zelenka, M.; Schäfers, M.; Sommer, C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain, 2005, 116(3), 257-263.
[http://dx.doi.org/10.1016/j.pain.2005.04.018] [PMID: 15964142]
[57]
Huang, P.C.; Tsai, K.L.; Chen, Y.W.; Lin, H.T.; Hung, C.H. Exercise combined with ultrasound attenuates neuropathic pain in rats associated with downregulation of IL-6 and TNF-α, but with upregulation of IL-10. Anesth. Analg., 2017, 124(6), 2038-2044.
[http://dx.doi.org/10.1213/ANE.0000000000001600] [PMID: 28319508]
[58]
Zhang, Q.; Yu, J.; Wang, J.; Ding, C.P.; Han, S.P.; Zeng, X.Y.; Wang, J.Y. The red nucleus TNF-α participates in the initiation and maintenance of neuropathic pain through different signaling pathways. Neurochem. Res., 2015, 40(7), 1360-1371.
[http://dx.doi.org/10.1007/s11064-015-1599-9] [PMID: 25952358]
[59]
Xu, J.T.; Xin, W.J.; Zang, Y.; Wu, C.Y.; Liu, X.G. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain, 2006, 123(3), 306-321.
[http://dx.doi.org/10.1016/j.pain.2006.03.011] [PMID: 16675114]
[60]
Hao, S.; Mata, M.; Glorioso, J.C.; Fink, D.J. Gene transfer to interfere with TNF alpha signaling in neuropathic pain. Gene Ther., 2007, 14(13), 1010-1016.
[http://dx.doi.org/10.1038/sj.gt.3302950] [PMID: 17443214]
[61]
Zhang, L.; Berta, T.; Xu, Z.Z.; Liu, T.; Park, J.Y.; Ji, R.R. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain, 2011, 152(2), 419-427.
[http://dx.doi.org/10.1016/j.pain.2010.11.014] [PMID: 21159431]
[62]
Tchetina, E.V.; Pivanova, A.N.; Markova, G.A.; Lukina, G.V.; Aleksandrova, E.N.; Aleksankin, A.P.; Makarov, S.A.; Kuzin, A.N. Rituximab downregulates gene expression associated with cell proliferation, survival, and proteolysis in the peripheral blood from rheumatoid arthritis patients: a link between high baseline autophagy-related ULK1 expression and improved pain control. Arthritis (Egypt), 2016, 2016,4963950.
[http://dx.doi.org/10.1155/2016/4963950] [PMID: 27057353]
[63]
Czeschik, J.C.; Hagenacker, T.; Schäfers, M.; Büsselberg, D. TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci. Lett., 2008, 434(3), 293-298.
[http://dx.doi.org/10.1016/j.neulet.2008.01.070] [PMID: 18314270]
[64]
Jin, X.; Gereau, R.W. IV Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci., 2006, 26(1), 246-255.
[http://dx.doi.org/10.1523/JNEUROSCI.3858-05.2006] [PMID: 16399694]
[65]
Liu, B.G.; Dobretsov, M.; Stimers, J.R.; Zhang, J.M. Tumor necrosis factor-α suppresses activation of sustained potassium currents in rat small diameter sensory neurons. Open Pain J., 2008, 1, 1.
[http://dx.doi.org/10.2174/1876386300902010001] [PMID: 20165558]
[66]
Oen, K.; Malleson, P.N.; Cabral, D.A.; Rosenberg, A.M.; Petty, R.E.; Nickerson, P.; Reed, M. Cytokine genotypes correlate with pain and radiologically defined joint damage in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford), 2005, 44(9), 1115-1121.
[http://dx.doi.org/10.1093/rheumatology/keh689] [PMID: 15901906]
[67]
Marinova, K.; Toma, V.; Aeschlimann, A.; Gay, R.; Simmen, B.; Michel, B.; Gay, S.; Sprott, H. 227 differential “pain” gene expression and modulation exerted by ATP in synovial fibroblasts from patients with symptomatic osteoarthritis and rheumatoid arthritis. Eur. J. Pain, 2009, 13(S1), S73b-S73.
[http://dx.doi.org/10.1016/S1090-3801(09)60230-5]
[68]
Campbell, J.N.; Meyer, R.A. Mechanisms of neuropathic pain. Neuron, 2006, 52(1), 77-92.
[http://dx.doi.org/10.1016/j.neuron.2006.09.021] [PMID: 17015228]
[69]
Lechner, J.; Rudi, T.; von Baehr, V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: a review of known and poorly understood inflammatory patterns in osteonecrosis. Clin. Cosmet. Investig. Dent., 2018, 10, 251-262.
[http://dx.doi.org/10.2147/CCIDE.S184498] [PMID: 30519117]
[70]
Sisignano, M.; Lötsch, J.; Parnham, M.J.; Geisslinger, G. Potential biomarkers for persistent and neuropathic pain therapy. Pharmacol. Ther., 2019, 199, 16-29.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.004] [PMID: 30759376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy