Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Aberrant DNA Methylation Pattern may Enhance Susceptibility to Migraine: A Novel Perspective

Author(s): Divya Goel, Kaiser Un Nisa, Mohammad Irshad Reza*, Ziaur Rahman and Shaikh Aamer

Volume 18, Issue 7, 2019

Page: [504 - 515] Pages: 12

DOI: 10.2174/1871527318666190809162631

Price: $65

Abstract

In today’s world, migraine is one of the most frequent disorders with an estimated world prevalence of 14.7% characterized by attacks of a severe headache making people enfeebled and imposing a big socioeconomic burden. The pathophysiology of a migraine is not completely understood however there are pieces of evidence that epigenetics performs a primary role in the pathophysiology of migraine. Here, in this review, we highlight current evidence for an epigenetic link with migraine in particular DNA methylation of numerous genes involved in migraine pathogenesis. Outcomes of various studies have explained the function of DNA methylation of a several migraine related genes such as RAMP1, CALCA, NOS1, ESR1, MTHFR and NR4A3 in migraine pathogenesis. Mentioned data suggested there exist a strong association of DNA methylation of migraine-related genes in migraine. Although we now have a general understanding of the role of epigenetic modifications of a numerous migraine associated genes in migraine pathogenesis, there are many areas of active research are of key relevance to medicine. Future studies into the complexities of epigenetic modifications will bring a new understanding of the mechanisms of migraine processes and open novel approaches towards therapeutic intervention.

Keywords: Migraine, headache, gene, DNA methylation, genetics, epigenetics.

Graphical Abstract

[1]
Loder E. Triptan therapy in migraine. N Engl J Med 2010; 363(1): 63-70.
[http://dx.doi.org/10.1056/NEJMct0910887] [PMID: 20592298]
[2]
Silberstein SD, Dodick DW, Bigal ME, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med 2017; 377(22): 2113-22.
[http://dx.doi.org/10.1056/NEJMoa1709038] [PMID: 29171818]
[3]
Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Olesen J, Silberstein SD. Chronic migraine-classification, characteristics and treatment. Nat Rev Neurol 2012; 8(3): 162-71.
[http://dx.doi.org/10.1038/nrneurol.2012.13] [PMID: 22331030]
[4]
Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorder. Cephalalgia 2004; (24): (Suppl. 1)9-160.
[5]
Wessman M, Terwindt GM, Kaunisto MA, Palotie A, Ophoff RA. Migraine: A complex genetic disorder. Lancet Neurol 2007; 6(6): 521-32.
[http://dx.doi.org/10.1016/S1474-4422(07)70126-6] [PMID: 17509487]
[6]
Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci 2003; 4(5): 386-98.
[http://dx.doi.org/10.1038/nrn1102] [PMID: 12728266]
[7]
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1545-602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[8]
Hershey AD. CGRP - The next frontier for migraine. N Engl J Med 2017; 377(22): 2190-1.
[http://dx.doi.org/10.1056/NEJMe1712559] [PMID: 29171812]
[9]
Linet MS, Stewart WF, Celentano DD, Ziegler D, Sprecher M. An epidemiologic study of headache among adolescents and young adults. JAMA 1989; 261(15): 2211-6.
[http://dx.doi.org/10.1001/jama.1989.03420150061038] [PMID: 2926969]
[10]
Stewart WF, Wood C, Reed ML, Roy J, Lipton RB. Cumulative lifetime migraine incidence in women and men. Cephalalgia 2008; 28(11): 1170-8.
[http://dx.doi.org/10.1111/j.1468-2982.2008.01666.x] [PMID: 18644028]
[11]
Adeney KL, Williams MA. Migraine headaches and preeclampsia: An epidemiologic review. Headache 2006; 46(5): 794-803.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00432.x] [PMID: 16643583]
[12]
Schürks M, Rist PM, Bigal ME, Buring JE, Lipton RB, Kurth T. Migraine and cardiovascular disease: Systematic review and meta-analysis. BMJ 2009; 339: b3914.
[http://dx.doi.org/10.1136/bmj.b3914] [PMID: 19861375]
[13]
Goadsby PJ. The vascular theory of migraine-a great story wrecked by the facts. Brain 2009; 132(Pt 1): 6-7.
[http://dx.doi.org/10.1093/brain/awn321] [PMID: 19098031]
[14]
Peterlin BL, Rosso AL, Williams MA, et al. Episodic migraine and obesity and the influence of age, race, and sex. Neurology 2013; 81(15): 1314-21.
[http://dx.doi.org/10.1212/WNL.0b013e3182a824f7] [PMID: 24027060]
[15]
Scher AI, Stewart WF, Ricci JA, Lipton RB. Factors associated with the onset and remission of chronic daily headache in a population-based study Pain 2003; 106(1-2): 81-9.
[http://dx.doi.org/10.1016/S0304-3959(03)00293-8] [PMID: 14581114]
[16]
Soveyd N, Abdolahi M, Djalali M, et al. The combined effects of ω-3 fatty acids and nano-curcumin supplementation on Intercellular Adhesion Molecule-1 (ICAM-1) gene expression and serum levels in migraine patients. CNS Neurol Disord Drug Targets 2018; 16(10): 1120-6.
[http://dx.doi.org/10.2174/1871527317666171213154749] [PMID: 29237386]
[17]
Abdolahi M, Sarraf P, Javanbakht MH, et al. A novel combination of ω-3 fatty acids and nano-curcumin modulates interleukin-6 gene expression and high sensitivity c-reactive protein serum levels in patients with migraine: A randomized clinical trial study. CNS Neurol Disord Drug Targets 2018; 17(6): 430-8.
[http://dx.doi.org/10.2174/1871527317666180625101643] [PMID: 29938621]
[18]
Xu N, Azziz R, Goodarzi MO. Epigenetics in polycystic ovary syndrome: A pilot study of global DNA methylation. Fertil Steril 2010; 94(2): 781-3.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2009.10.020] [PMID: 19939367]
[19]
Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: Beyond genes silencing. Oncotarget 2017; 8(3): 5629-37.
[http://dx.doi.org/10.18632/oncotarget.13562] [PMID: 27895318]
[20]
Pries L-K, Gülöksüz S, Kenis G. DNA methylation in schizophrenia. Adv Exp Med Biol 2017; 978: 211-36.
[http://dx.doi.org/10.1007/978-3-319-53889-1_12] [PMID: 28523549]
[21]
Pishva E, Rutten BPF, van den Hove D. DNA methylation in major depressive disorder. Adv Exp Med Biol 2017; 978: 185-96.
[http://dx.doi.org/10.1007/978-3-319-53889-1_10] [PMID: 28523547]
[22]
Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer’s disease: Decrements in DNA methylation. Neurobiol Aging 2010; 31(12): 2025-37.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.12.005] [PMID: 19117641]
[23]
Bollati V, Galimberti D, Pergoli L, et al. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 2011; 25(6): 1078-83.
[http://dx.doi.org/10.1016/j.bbi.2011.01.017] [PMID: 21296655]
[24]
Masliah E, Dumaop W, Galasko D, Desplats P. Distinctive patterns of DNA methylation associated with Parkinson disease: Identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 2013; 8(10): 1030-8.
[http://dx.doi.org/10.4161/epi.25865] [PMID: 23907097]
[25]
Wüllner U, Kaut O, deBoni L, Piston D, Schmitt I. DNA methylation in Parkinson’s disease. J Neurochem 2016; 139(Suppl. 1): 108-20.
[http://dx.doi.org/10.1111/jnc.13646] [PMID: 27120258]
[26]
Labruijere S, Stolk L, Verbiest M, et al. Methylation of migraine-related genes in different tissues of the rat. PLoS One 2014; 9(3)e87616
[http://dx.doi.org/10.1371/journal.pone.0087616] [PMID: 24609082]
[27]
Chen Y. SIRT1 expression and activity are up-regulated in the brain tissue of epileptic patients and rat models. Nan Fang Yi Ke Da Xue Xue Bao 2013; 33(4): 528-32.
[28]
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28(10): 1057-68.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[29]
Roth TL, Lubin FD, Sodhi M, Kleinman JE. Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta 2009; 1790(9): 869-77.
[http://dx.doi.org/10.1016/j.bbagen.2009.06.009] [PMID: 19559755]
[30]
Marques S, Outeiro TF. Epigenetics in Parkinson’s and Alzheimer’s diseases. Subcell Biochem 2013; 61: 507-25.
[http://dx.doi.org/10.1007/978-94-007-4525-4_22] [PMID: 23150265]
[31]
Kwok JBJ. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2010; 2(5): 671-82.
[http://dx.doi.org/10.2217/epi.10.43] [PMID: 22122050]
[32]
Eising EA, Datson N, van den Maagdenberg AM, Ferrari MD. Epigenetic mechanisms in migraine: A promising avenue? BMC Med 2013; 11(1): 26.
[http://dx.doi.org/10.1186/1741-7015-11-26] [PMID: 23379668]
[33]
Shamsi MB, Firoz AS, Imam SN, Alzaman N, Samman MA. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci 2017; 12(3): 205-11.
[http://dx.doi.org/10.1016/j.jtumed.2017.04.003]
[34]
Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 1944; 79(2): 137-58.
[http://dx.doi.org/10.1084/jem.79.2.137] [PMID: 19871359]
[35]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[36]
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21.
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[37]
Edwards JR, O’Donnell AH, Rollins RA, et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 2010; 20(7): 972-80.
[http://dx.doi.org/10.1101/gr.101535.109] [PMID: 20488932]
[38]
Hsieh CL. Dependence of transcriptional repression on CpG methylation density. Mol Cell Biol 1994; 14(8): 5487-94.
[39]
Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell 1999; 99(5): 451-4.
[PMID: 10589672]
[40]
Nan X, Ng H-H, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393(6683): 386-9.
[http://dx.doi.org/10.1038/30764] [PMID: 9620804]
[41]
Sanchez-Perez Y, Soto-Reyes E, Garcia-Cuellar CM, Cacho-Diaz B, Santamaría A, Rangel-Lopez E. Role of epigenetics and oxidative stress in gliomagenesis. CNS Neurol Disord Drug Targets 2017; 16(10): 1090-8.
[http://dx.doi.org/10.2174/1871527317666180110124645] [PMID: 29318979]
[42]
Manjegowda MC, Gupta PS, Limaye AM. Hyper-methylation of the upstream CpG island shore is a likely mechanism of GPER1 silencing in breast cancer cells. Gene 2017; 614: 65-73.
[http://dx.doi.org/10.1016/j.gene.2017.03.006] [PMID: 28286086]
[43]
Guibert S, Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development Current Topics in Developmental Biology 1st ed. 2013; 104: 47-83.
[http://dx.doi.org/10.1016/B978-0-12-416027-9.00002-4]
[44]
Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311(5759): 395-8.
[http://dx.doi.org/10.1126/science.1120976] [PMID: 16424344]
[45]
Jeong S, Liang G, Sharma S, et al. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 2009; 29(19): 5366-76.
[http://dx.doi.org/10.1128/MCB.00484-09] [PMID: 19620278]
[46]
Arand J, Spieler D, Karius T, et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 2012; 8(6)e1002750
[http://dx.doi.org/10.1371/journal.pgen.1002750] [PMID: 22761581]
[47]
Borgel J, Guibert S, Li Y, et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 2010; 42(12): 1093-100.
[http://dx.doi.org/10.1038/ng.708] [PMID: 21057502]
[48]
Kobayashi H, Sakurai T, Imai M, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 2012; 8(1)e1002440
[http://dx.doi.org/10.1371/journal.pgen.1002440] [PMID: 22242016]
[49]
Smallwood SA, Tomizawa S, Krueger F, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 2011; 43(8): 811-4.
[http://dx.doi.org/10.1038/ng.864] [PMID: 21706000]
[50]
Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007; 449(7159): 248-51.
[http://dx.doi.org/10.1038/nature06146] [PMID: 17713477]
[51]
Ooi SKT, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448(7154): 714-7.
[http://dx.doi.org/10.1038/nature05987] [PMID: 17687327]
[52]
Mulder EJ, Van Baal C, Gaist D, et al. Genetic and environmental influences on migraine: A twin study across six countries. Twin Res 2003; 6(5): 422-31.
[http://dx.doi.org/10.1375/136905203770326420] [PMID: 14624726]
[53]
Schürks M, Rist PM, Kurth T. MTHFR 677C>T and ACE D/I polymorphisms in migraine: A systematic review and meta-analysis. Headache 2010; 50(4): 588-99.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01570.x] [PMID: 19925624]
[54]
Manev H, Uz T. DNA hypomethylating agents 5-aza-2′-deoxycytidine and valproate increase neuronal 5-lipoxygenase mRNA. Eur J Pharmacol 2002; 445(1-2): 149-50.
[http://dx.doi.org/10.1016/S0014-2999(02)01711-9] [PMID: 12065206]
[55]
Imamura T. Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells. Horm Behav 2011; 59(3): 345-52.
[http://dx.doi.org/10.1016/j.yhbeh.2010.05.018] [PMID: 20619266]
[56]
Green CD, Han J-DJ. Epigenetic regulation by nuclear receptors. Epigenomics 2011; 3(1): 59-72.
[http://dx.doi.org/10.2217/epi.10.75] [PMID: 22126153]
[57]
Heo J, Lim J, Lee S, et al. Sirt1 regulates DNA methylation and differentiation potential of embryonic stem cells by Antagonizing Dnmt3l. Cell Rep 2017; 18(8): 1930-45.
[http://dx.doi.org/10.1016/j.celrep.2017.01.074] [PMID: 28228259]
[58]
Martins IJ. Heat shock gene inactivation and protein aggregation with links to chronic diseases. Diseases 2018; 6(2): 39.
[http://dx.doi.org/10.3390/diseases6020039] [PMID: 29783682]
[59]
Wang D, Li Z, Zhang Y, et al. Targeting of microRNA-199a-5p protects against pilocarpine-induced status epilepticus and seizure damage via SIRT1-p53 cascade. Epilepsia 2016; 57(5): 706-16.
[http://dx.doi.org/10.1111/epi.13348] [PMID: 26945677]
[60]
Irkeca C, Altiparmaka T, Altiparmak T, Yazici D, Cezayira R. Turalb, N, Peripheral levels of BDNF and sirtuin 1 in migraine. J Neurol Sci 2017; 381: 430.
[http://dx.doi.org/10.1016/j.jns.2017.08.3426]
[61]
Nye BL, Thadani VM. Migraine and epilepsy: Review of the literature. Headache 2015; 55(3): 359-80.
[http://dx.doi.org/10.1111/head.12536] [PMID: 25754865]
[62]
Durham PL. Inhibition of calcitonin gene-related peptide function: A promising strategy for treating migraine. Headache 2008; 48(8): 1269-75.
[http://dx.doi.org/10.1111/j.1526-4610.2008.01215.x] [PMID: 18808507]
[63]
Edvinsson L. Novel migraine therapy with calcitonin gene-regulated peptide receptor antagonists. Expert Opin Ther Targets 2007; 11(9): 1179-88.
[http://dx.doi.org/10.1517/14728222.11.9.1179] [PMID: 17845144]
[64]
Ho TW, Ferrari MD, Dodick DW, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: A randomised, placebo-controlled, parallel-treatment trial. Lancet 2008; 37(9656): 2115-23.
[http://dx.doi.org/10.1016/S0140-6736(08)61626-8] [PMID: 19036425]
[65]
Olesen J, Diener H-C, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 2004; 350(11): 1104-10.
[http://dx.doi.org/10.1056/NEJMoa030505] [PMID: 15014183]
[66]
Tendl KA, Schulz SMF, Mechtler TP, et al. DNA methylation pattern of CALCA in preterm neonates with bacterial sepsis as a putative epigenetic biomarker. Epigenetics 2013; 8(12): 1261-7.
[http://dx.doi.org/10.4161/epi.26645] [PMID: 24135723]
[67]
Pietrobon D. Calcium channels and migraine. Biochim Biophys Acta 2013; 1828(7): 1655-65.
[http://dx.doi.org/10.1016/j.bbamem.2012.11.012] [PMID: 23165010]
[68]
Ihalainen J, Juvonen E, Savolainen E-R, Ruutu T, Palotie A. Calcitonin gene methylation in chronic myeloproliferative disorders. Leukemia 1994; 8(2): 230-5.
[PMID: 8309247]
[69]
Baylin SB, Makos M, Wu JJ, et al. Abnormal patterns of DNA methylation in human neoplasia: Potential consequences for tumor progression. Cancer Cells 1991; 3(10): 383-90.
[PMID: 1777359]
[70]
Ismail EAR, El-Mogy MI, Mohamed DS, El-Farrash RAH. Methylation pattern of calcitonin (CALCA) gene in pediatric acute leukemia. J Pediatr Hematol Oncol 2011; 33(7): 534-42.
[http://dx.doi.org/10.1097/MPH.0b013e3181f46bc4] [PMID: 21423046]
[71]
Dhodapkar M, Grill J, Lust JA. Abnormal regional hypermethylation of the calcitonin gene in myelodysplastic syndromes. Leuk Res 1995; 19(10): 719-26.
[http://dx.doi.org/10.1016/0145-2126(95)00019-K] [PMID: 7500648]
[72]
Martinelli CMDS, Lengert AVH, Cárcano FM, et al. MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients. Oncotarget 2016; 8(31): 50608-17.
[PMID: 28881587]
[73]
Menon S, Buteri J, Roy B, et al. Association study of calcitonin gene-related polypeptide-alpha (CALCA) gene polymorphism with migraine. Brain Res 2011; 1378: 119-24.
[http://dx.doi.org/10.1016/j.brainres.2010.12.072] [PMID: 21195698]
[74]
An X, Yu Z, Fang J, Lin Q, Lu C, Ma QL, et al. Association of CALCA and RAMP1 gene polymorphisms with migraine in a chinese population. Neurol Asia 2017; 22(3): 221-5.
[75]
Baylin SB, Höppener JWM, de Bustros A, Steenbergh PH, Lips CJM, Nelkin BD. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 1986; 46(6): 2917-22.
[PMID: 3009002]
[76]
Broad PM, Symes AJ, Thakker RV, Craig RK. Structure and methylation of the human calcitonin/α-CGRP gene. Nucleic Acids Res 1989; 17(17): 6999-7011.
[http://dx.doi.org/10.1093/nar/17.17.6999] [PMID: 2571128]
[77]
Park KY, Fletcher JR, Raddant AC, Russo AF. Epigenetic regulation of the calcitonin gene-related peptide gene in trigeminal glia. Cephalalgia 2011; 31(5): 614-24.
[http://dx.doi.org/10.1177/0333102410391487] [PMID: 21216873]
[78]
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997; 389(6649): 349-52.
[http://dx.doi.org/10.1038/38664] [PMID: 9311776]
[79]
Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther 2006; 109(1-2): 173-97.
[http://dx.doi.org/10.1016/j.pharmthera.2005.06.015] [PMID: 16111761]
[80]
McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393(6683): 333-9.
[http://dx.doi.org/10.1038/30666] [PMID: 9620797]
[81]
Ana R, Goadsby PJ. NIH Public Access Drugs News Perspect 2011; 23(2): 112-7.
[82]
Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002; 54(2): 233-46.
[http://dx.doi.org/10.1124/pr.54.2.233] [PMID: 12037140]
[83]
Bomberger JM, Parameswaran N, Hall CS, Aiyar N, Spielman WS. Novel function for Receptor Activity-Modifying Proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem 2005; 280(10): 9297-307.
[http://dx.doi.org/10.1074/jbc.M413786200] [PMID: 15613468]
[84]
Zhao Z, Fu X, Zhang G, Li Y, Wu M, Tan Y. The influence of RAMP1 overexpression on CGRP-induced osteogenic differentiation in MG-63 cells in vitro: An experimental study. J Cell Biochem 2013; 114(2): 314-22.
[http://dx.doi.org/10.1002/jcb.24375] [PMID: 22949393]
[85]
Tsujikawa K, Yayama K, Hayashi T, et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Natl Acad Sci USA 2007; 104(42): 16702-7.
[http://dx.doi.org/10.1073/pnas.0705974104] [PMID: 17923674]
[86]
Nakayama T, Nakazato T, Naruse H, et al. Haplotype-based, case-control study of the Receptor (calcitonin) Activity-Modifying Protein (RAMP) 1 gene in essential hypertension. J Hum Hypertens 2017; 31(5): 361-5.
[http://dx.doi.org/10.1038/jhh.2016.96] [PMID: 28181496]
[87]
Nakazato T, Nakayama T, Naganuma T, et al. Haplotype-based case-control study of receptor (calcitonin) activity-modifying protein-1 gene in cerebral infarction. J Hum Hypertens 2010; 24(5): 351-8.
[http://dx.doi.org/10.1038/jhh.2009.68] [PMID: 19710695]
[88]
Recober A, Kaiser EA, Kuburas A, Russo AF. Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 2010; 58(1): 156-65.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.009] [PMID: 19607849]
[89]
Marquez de Prado B, Hammond DL, Russo AF. Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain 2009; 10(9): 992-1000.
[http://dx.doi.org/10.1016/j.jpain.2009.03.018] [PMID: 19628434]
[90]
Cargnin S, Pautasso C, Viana M, et al. Association of RAMP1 rs7590387 with the risk of migraine transformation into medication overuse headache. Headache 2015; 55(5): 658-68.
[http://dx.doi.org/10.1111/head.12559] [PMID: 25881990]
[91]
Sutherland HG, Buteri J, Menon S, et al. Association study of the calcitonin gene-related polypeptide-alpha (CALCA) and the receptor activity modifying 1 (RAMP1) genes with migraine. Gene 2013; 515(1): 187-92.
[http://dx.doi.org/10.1016/j.gene.2012.11.053] [PMID: 23237777]
[92]
Rudkjobing LA, Esserlind A-L, Olesen J. Future possibilities in migraine genetics. J Headache Pain 2012; 13(7): 505-11.
[http://dx.doi.org/10.1007/s10194-012-0481-2] [PMID: 22955452]
[93]
Wan D, Hou L, Zhang X, et al. DNA methylation of RAMP1 gene in migraine: An exploratory analysis. J Headache Pain 2015; 16(1): 90.
[http://dx.doi.org/10.1186/s10194-015-0576-7] [PMID: 26501962]
[94]
Froese DS, Kopec J, Rembeza E, et al. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Nat Commun 2018; 9(1): 2261.
[http://dx.doi.org/10.1038/s41467-018-04735-2] [PMID: 29891918]
[95]
Froese DS, Huemer M, Suormala T, et al. Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mutat 2016; 37(5): 427-38.
[http://dx.doi.org/10.1002/humu.22970] [PMID: 26872964]
[96]
Gao S, Li H, Xiao H, et al. Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage: A meta-analysis. J Neurol Sci 2012; 323(1-2): 40-5.
[http://dx.doi.org/10.1016/j.jns.2012.07.038] [PMID: 22938732]
[97]
Kim JO, Park HS, Ryu CS, et al. Interplay between 3′-UTR polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and the risk of ischemic stroke. Sci Rep 2017; 7(1): 12464.
[http://dx.doi.org/10.1038/s41598-017-12668-x] [PMID: 28963520]
[98]
Boccia S, Boffetta P, Brennan P, et al. Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Lett 2009; 273(1): 55-61.
[http://dx.doi.org/10.1016/j.canlet.2008.07.026] [PMID: 18789576]
[99]
Al-Rubeaan K, Siddiqui K, Saeb ATM, Nazir N, Al-Naqeb D, Al-Qasim S. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: A meta-analysis. Gene 2013; 520(2): 166-77.
[http://dx.doi.org/10.1016/j.gene.2013.02.017] [PMID: 23458876]
[100]
Karabacak E, Aydin E, Ozcan O, et al. Methylenetetrahydrofolate reductase (MTHFR) 677C>T gene polymorphism as a possible factor for reducing clinical severity of psoriasis. Int J Clin Exp Med 2014; 7(3): 697-702.
[PMID: 24753765]
[101]
Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry 2018; 8(1): 242.
[http://dx.doi.org/10.1038/s41398-018-0276-6] [PMID: 30397195]
[102]
Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am J Epidemiol 2007; 165(1): 1-13.
[http://dx.doi.org/10.1093/aje/kwj347] [PMID: 17074966]
[103]
Kageyama M, Hiraoka M, Kagawa Y. Relationship between genetic polymorphism, serum folate and homocysteine in Alzheimer’s disease Asia-Pacific J public Heal 2008; 20: 111-7.
[104]
Wu Y-L, Ding X-X, Sun Y-H, Yang H-Y, Sun L. Methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and susceptibility to Parkinson’s disease: A meta-analysis. J Neurol Sci 2013; 335(1– 2): 14-21.
[105]
Hobbs CA, Sherman SL, Yi P, et al. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 2000; 67(3): 623-30.
[http://dx.doi.org/10.1086/303055] [PMID: 10930360]
[106]
Wu Y-L, Hu C-Y, Lu S-S, et al. Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: A systematic review and meta-analysis. Metabolism 2014; 63(12): 1503-11.
[http://dx.doi.org/10.1016/j.metabol.2014.10.001] [PMID: 25458833]
[107]
Cruz-Flores G, Etchevers-Barra JD. Contenidos de carbono orgánico de suelos someros en pinares y abetales de áreas protegidas de México. Agrociencia 2011; 45(8): 849-62.
[108]
Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet 2015; 58(1): 1-10.
[http://dx.doi.org/10.1016/j.ejmg.2014.10.004] [PMID: 25449138]
[109]
Lea R, Colson N, Quinlan S, Macmillan J, Griffiths L. The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet Genomics 2009; 19(6): 422-8.
[http://dx.doi.org/10.1097/FPC.0b013e32832af5a3] [PMID: 19384265]
[110]
Takano T, Tian G-F, Peng W, et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 2007; 10(6): 754-62.
[http://dx.doi.org/10.1038/nn1902] [PMID: 17468748]
[111]
Kara I, Sazci A, Ergul E, Kaya G, Kilic G. Association of the C677T and A1298C polymorphisms in the 5,10 methylenetetrahydrofolate reductase gene in patients with migraine risk. Brain Res Mol Brain Res 2003; 111(1-2): 84-90.
[http://dx.doi.org/10.1016/S0169-328X(02)00672-1] [PMID: 12654508]
[112]
Kowa H, Yasui K, Takeshima T, Urakami K, Sakai F, Nakashima K. The homozygous C677T mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for migraine. Am J Med Genet 2000; 96(6): 762-4.
[http://dx.doi.org/10.1002/1096-8628(20001204)96:6<762:AID-AJMG12>3.0.CO;2-X] [PMID: 11121176]
[113]
Lea RA, Ovcaric M, Sundholm J, MacMillan J, Griffiths LR. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. BMC Med 2004; 2(1): 3.
[http://dx.doi.org/10.1186/1741-7015-2-3] [PMID: 15053827]
[114]
Kaunisto MA, Kallela M, Hämäläinen E, et al. Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia 2006; 26(12): 1462-72.
[http://dx.doi.org/10.1111/j.1468-2982.2006.01228.x] [PMID: 17116097]
[115]
Gan SH, Shaik MM. Epigenetics and migraine.In: Neuropsychiatric Disorders and Epigenetics. Academic Press USA 2017; pp. 215-31.
[116]
Friso S, Girelli D, Trabetti E, et al. The MTHFR 1298A>C polymorphism and genomic DNA methylation in human lymphocytes. Cancer Epidemiol Biomarkers Prev 2005; 14(4): 938-43.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0601] [PMID: 15824167]
[117]
Castro R, Rivera I, Ravasco P, et al. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T and 1298A-->C mutations are associated with DNA hypomethylation. J Med Genet 2004; 41(6): 454-8.
[http://dx.doi.org/10.1136/jmg.2003.017244] [PMID: 15173232]
[118]
Sontag JM, Wasek B, Taleski G, et al. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice. Front Aging Neurosci 2014; 6(AUG): 214.
[http://dx.doi.org/10.3389/fnagi.2014.00214] [PMID: 25202269]
[119]
Puri V, Puri S, Svojanovsky SR, et al. Effects of oestrogen on trigeminal ganglia in culture: Implications for hormonal effects on migraine. Cephalalgia 2006; 26(1): 33-42.
[http://dx.doi.org/10.1111/j.1468-2982.2005.00987.x] [PMID: 16396664]
[120]
Puri V, Cui L, Liverman CS, et al. Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 2005; 39(4): 409-17.
[http://dx.doi.org/10.1016/j.npep.2005.04.002] [PMID: 15936815]
[121]
Xu Y, Traystman RJ, Hurn PD, Wang MM. Neurite-localized estrogen receptor-α mediates rapid signaling by estrogen. J Neurosci Res 2003; 74(1): 1-11.
[http://dx.doi.org/10.1002/jnr.10725] [PMID: 13130501]
[122]
Österlund MK, Hurd YL. Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Prog Neurobiol 2001; 64(3): 251-67.
[http://dx.doi.org/10.1016/S0301-0082(00)00059-9] [PMID: 11240308]
[123]
Sundermann EE, Maki PM, Bishop JR. A review of estrogen receptor α gene (ESR1) polymorphisms, mood, and cognition. Menopause 2010; 17(4): 874-86.
[http://dx.doi.org/10.1097/gme.0b013e3181df4a19] [PMID: 20616674]
[124]
Corbo RM, Gambina G, Ruggeri M, Scacchi R. Association of estrogen receptor α (ESR1) PvuII and XbaI polymorphisms with sporadic Alzheimer’s disease and their effect on apolipoprotein E concentrations. Dement Geriatr Cogn Disord 2006; 22(1): 67-72.
[http://dx.doi.org/10.1159/000093315] [PMID: 16699281]
[125]
Perlman WR, Webster MJ, Kleinman JE, Weickert CS. Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 2004; 56(11): 844-52.
[http://dx.doi.org/10.1016/j.biopsych.2004.09.006] [PMID: 15576061]
[126]
Sand PG, Schlurmann K, Luckhaus C, et al. Estrogen receptor 1 gene (ESR1) variants in panic disorder. Am J Med Genet 2002; 114(4): 426-8.
[http://dx.doi.org/10.1002/ajmg.10359] [PMID: 11992565]
[127]
Flanagan JM, Cocciardi S, Waddell N, et al. DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 2010; 86(3): 420-33.
[http://dx.doi.org/10.1016/j.ajhg.2010.02.008] [PMID: 20206335]
[128]
Westberry JM, Trout AL, Wilson ME. Epigenetic regulation of estrogen receptor α gene expression in the mouse cortex during early postnatal development. Endocrinology 2010; 151(2): 731-40.
[http://dx.doi.org/10.1210/en.2009-0955] [PMID: 19966177]
[129]
Kurian JR, Olesen KM, Auger AP. Sex differences in epigenetic regulation of the estrogen receptor-α promoter within the developing preoptic area. Endocrinology 2010; 151(5): 2297-305.
[http://dx.doi.org/10.1210/en.2009-0649] [PMID: 20237133]
[130]
Labruijere S, Verbiest M, De Vries R, Danser A, Uitterlinden A, Stolk L, et al. 17B-Estradiol and Methylation of Migraine-Related Genes. J Headache Pain 2013; 14: 29.
[http://dx.doi.org/10.1186/1129-2377-14-S1-P29]
[131]
O’Dell TJ, Hawkins RD, Kandel ER, Arancio O. Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 1991; 88(24): 11285-9.
[http://dx.doi.org/10.1073/pnas.88.24.11285] [PMID: 1684863]
[132]
Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 1983; 306(5939): 174-6.
[http://dx.doi.org/10.1038/306174a0] [PMID: 6316142]
[133]
Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 1996; 93(17): 9114-9.
[http://dx.doi.org/10.1073/pnas.93.17.9114] [PMID: 8799163]
[134]
Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci USA 1995; 92(5): 1267-71.
[http://dx.doi.org/10.1073/pnas.92.5.1267] [PMID: 7533289]
[135]
Brüne B, Dimmeler S, Molina y Vedia L, Lapetina EG. Nitric oxide: A signal for ADP-ribosylation of proteins. Life Sci 1994; 54(2): 61-70.
[http://dx.doi.org/10.1016/0024-3205(94)00775-6] [PMID: 8277819]
[136]
Phillips K, Majola A, Gokul A, Keyster M, Ludidi N, Egbichi I. Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis. Sci Rep 2018; 8(1): 12628.
[http://dx.doi.org/10.1038/s41598-018-31131-z] [PMID: 30135488]
[137]
Morris SMJ Jr. Enzymes of arginine metabolism. J Nutr 2004; 134(10)(Suppl.): 2743S-7S.
[http://dx.doi.org/10.1093/jn/134.10.2743S] [PMID: 15465778]
[138]
Ahmed SSSJ, Akram Husain RS. Suresh Kumar, Ramakrishnan V. Association Between NOS1 Gene Polymorphisms and Schizophrenia in Asian and Caucasian Populations: A Meta-Analysis. Neuromolecular Med 2017; 19(2-3): 452-61.
[http://dx.doi.org/10.1007/s12017-017-8460-z] [PMID: 28795310]
[139]
Huang H, Peng C, Liu Y, Liu X, Chen Q, Huang Z. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson’s disease: A meta-analysis. Medicine (Baltimore) 2016; 95(40)e4982
[http://dx.doi.org/10.1097/MD.0000000000004982] [PMID: 27749554]
[140]
Gupta SP, Kamal R, Mishra SK, Singh MK, Shukla R, Singh MP. association of polymorphism of neuronal nitric oxide synthase gene with risk to Parkinson’s disease. Mol Neurobiol 2016; 53(5): 3309-14.
[http://dx.doi.org/10.1007/s12035-015-9274-3] [PMID: 26081147]
[141]
Salatino-Oliveira A, Akutagava-Martins GC, Bruxel EM, et al. NOS1 and SNAP25 polymorphisms are associated with Attention-Deficit/Hyperactivity Disorder symptoms in adults but not in children. J Psychiatr Res 2016; 75: 75-81.
[http://dx.doi.org/10.1016/j.jpsychires.2016.01.010] [PMID: 26821215]
[142]
Bruenig D, Morris CP, Mehta D, et al. Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience. Gene 2017; 625: 42-8.
[http://dx.doi.org/10.1016/j.gene.2017.04.048] [PMID: 28465168]
[143]
Kuhn M, Haaker J, Glotzbach-Schoon E, et al. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes. Soc Cogn Affect Neurosci 2016; 11(5): 803-12.
[http://dx.doi.org/10.1093/scan/nsv151] [PMID: 26746182]
[144]
García-Martín E, Martínez C, Serrador M, et al. Neuronal nitric oxide synthase (nNOS, NOS1) rs693534 and rs7977109 variants and risk for migraine. Headache 2015; 55(9): 1209-17.
[http://dx.doi.org/10.1111/head.12617] [PMID: 26283425]
[145]
Dong H, Wang ZH, Dong B, Hu YN, Zhao HY. Endothelial nitric oxide synthase (-786T>C) polymorphism and migraine susceptibility: A meta-analysis. Medicine (Baltimore) 2018; 97(36)e12241
[http://dx.doi.org/10.1097/MD.0000000000012241] [PMID: 30200152]
[146]
Olesen J, Thomsen LL, Iversen H. Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 1994; 15(5): 149-53.
[http://dx.doi.org/10.1016/0165-6147(94)90075-2] [PMID: 7538702]
[147]
Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2007; 104(37): 14855-60.
[http://dx.doi.org/10.1073/pnas.0704329104] [PMID: 17785417]
[148]
Xing J, Liu H, Yang H, Chen R, Chen Y, Xu J. Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One 2014; 9(12)e116165
[http://dx.doi.org/10.1371/journal.pone.0116165] [PMID: 25541949]
[149]
Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect 2012; 120(9): 1320-6.
[http://dx.doi.org/10.1289/ehp.1104439] [PMID: 22591701]
[150]
Wockner LF, Noble EP, Lawford BR, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 2014; 4e: 339.
[http://dx.doi.org/10.1038/tp.2013.111] [PMID: 24399042]
[151]
Dammann G, Teschler S, Haag T, Altmüller F, Tuczek F, Dammann RH. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics 2011; 6(12): 1454-62.
[http://dx.doi.org/10.4161/epi.6.12.18363] [PMID: 22139575]
[152]
Chan Y, Fish JE, D’Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: A role for DNA methylation. J Biol Chem 2004; 279(33): 35087-100.
[http://dx.doi.org/10.1074/jbc.M405063200] [PMID: 15180995]
[153]
Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol 2005; 175(6): 3846-61.
[http://dx.doi.org/10.4049/jimmunol.175.6.3846] [PMID: 16148131]
[154]
Xu X-F, Ma X-L, Shen Z, Wu X-L, Cheng F, Du LZ. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens 2010; 28(11): 2227-35.
[http://dx.doi.org/10.1097/HJH.0b013e32833e08f1] [PMID: 20724942]
[155]
Wilcox T, Hirshkowitz A. NOS1 methylation and carotid artery intima media thickness in children. Circ Cardiovasc Genet 2015; 85(01): 1-27.
[156]
Wockner LF, Morris CP, Noble EP, et al. Brain-specific epigenetic markers of schizophrenia. Transl Psychiatry 2015; 5(11)e680
[http://dx.doi.org/10.1038/tp.2015.177] [PMID: 26575221]
[157]
Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999; 97(2): 161-3.
[158]
Alonso J, Galán M, Martí-Pàmies I, et al. NOR-1/NR4A3 regulates the cellular Inhibitor of Apoptosis 2 (cIAP2) in vascular cells: Role in the survival response to hypoxic stress. Sci Rep 2016; 6: 34056.
[159]
Martínez-González J, Badimon L. The NR4A subfamily of nuclear receptors: New early genes regulated by growth factors in vascular cells. Cardiovasc Res 2005; 65(3): 609-18.
[http://dx.doi.org/10.1016/j.cardiores.2004.10.002] [PMID: 15664387]
[160]
Montarolo F, Perga S, Martire S, et al. Altered NR4A subfamily gene expression level in peripheral blood of Parkinson’s and Alzheimer’s disease patients. Neurotox Res 2016; 30(3): 338-44.
[http://dx.doi.org/10.1007/s12640-016-9626-4] [PMID: 27159982]
[161]
Uekusa S, Kawashima H, Sugito K, et al. Nr4a3, a possibile oncogenic factor for neuroblastoma associated with CpGi methylation within the third exon. Int J Oncol 2014; 44(5): 1669-77.
[http://dx.doi.org/10.3892/ijo.2014.2340] [PMID: 24626568]
[162]
Novak G, Zai CC, Mirkhani M, et al. Replicated association of the NR4A3 gene with smoking behaviour in schizophrenia and in bipolar disorder. Genes Brain Behav 2010; 9(8): 910-7.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00631.x] [PMID: 20659174]
[163]
Helbling JC, Minni AM, Pallet V, Moisan MP. Stress and glucocorticoid regulation of NR4A genes in mice. J Neurosci Res 2014; 92(7): 825-34.
[http://dx.doi.org/10.1002/jnr.23366] [PMID: 24753204]
[164]
Schaffer DJ, Tunc-Ozcan E, Shukla PK, Volenec A, Redei EE. Nuclear orphan receptor Nor-1 contributes to depressive behavior in the Wistar-Kyoto rat model of depression. Brain Res 2010; 1362: 32-9.
[http://dx.doi.org/10.1016/j.brainres.2010.09.041] [PMID: 20851110]
[165]
Rojas P, Joodmardi E, Perlmann T, Ögren SO. Rapid increase of Nurr1 mRNA expression in limbic and cortical brain structures related to coping with depression-like behavior in mice. J Neurosci Res 2010; 88(10): 2284-93.
[http://dx.doi.org/10.1002/jnr.22377] [PMID: 20175204]
[166]
de Leeuw R, Schmidt JE, Carlson CR. Traumatic stressors and post-traumatic stress disorder symptoms in headache patients. Headache 2005; 45(10): 1365-74.
[http://dx.doi.org/10.1111/j.1526-4610.2005.00269.x] [PMID: 16324169]
[167]
Peterlin BL, Rosso AL, Sheftell FD, Libon DJ, Mossey JM, Merikangas KR. Post-traumatic stress disorder, drug abuse and migraine: New findings from the National Comorbidity Survey Replication (NCS-R). Cephalalgia 2011; 31(2): 235-44.
[http://dx.doi.org/10.1177/0333102410378051] [PMID: 20813779]
[168]
Peterlin BL, Tietjen GE, Brandes JL, et al. Posttraumatic stress disorder in migraine. Headache 2009; 49(4): 541-51.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01368.x] [PMID: 19245387]
[169]
Peterlin BL, Nijjar SS, Tietjen GE. Post-traumatic stress disorder and migraine: Epidemiology, sex differences, and potential mechanisms. Headache 2011; 51(6): 860-8.
[http://dx.doi.org/10.1111/j.1526-4610.2011.01907.x] [PMID: 21592096]
[170]
Shimizu R, Muto T, Aoyama K, et al. Possible role of intragenic DNA hypermethylation in gene silencing of the tumor suppressor gene NR4A3 in acute myeloid leukemia. Leuk Res 2016; 50: 85-94.
[http://dx.doi.org/10.1016/j.leukres.2016.09.018] [PMID: 27697661]
[171]
Shimizu R, Muto T, Takeuchi M, et al. Diverse role of DNA hypermethylation in reduced expression of tumor suppressor NR4A3 in acute myeloid leukemia. Blood 2015; 126: 3640.
[172]
Yeh C-M, Chang L-Y, Lin S-H, et al. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep 2016; 6: 31690.
[http://dx.doi.org/10.1038/srep31690] [PMID: 27528092]
[173]
Gazerani P. Current evidence on the role of epigenetic mechanisms in migraine: The way forward to precision medicine. OBM Genet 2018; 2(4): 1-1.
[http://dx.doi.org/10.21926/obm.genet.1804040]
[174]
Sauro KM, Becker WJ. The stress and migraine interaction Headache J head face pain 2009; 49(9): 1378-86.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01486.x]
[175]
Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7(8): 847-54.
[http://dx.doi.org/10.1038/nn1276] [PMID: 15220929]
[176]
Weaver ICG. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: Let’s call the whole thing off. Epigenetics 2007; 2(1): 22-8.
[http://dx.doi.org/10.4161/epi.2.1.3881] [PMID: 17965624]
[177]
Sintas C, Carreño O, Corominas R, et al. Screening of cacna1a and ATP1A2 genes in hemiplegic migraine: Clinical, genetic and functional studies. J Headache Pain 2013; 14: 26.
[http://dx.doi.org/10.1186/1129-2377-14-S1-P26]
[178]
Terwindt GM, Ophoff RA, Haan J, et al. Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Neurology 1998; 50(4): 1105-10.
[http://dx.doi.org/10.1212/WNL.50.4.1105] [PMID: 9566402]
[179]
Pierelli F, Grieco GS, Pauri F, et al. A novel ATP1A2 mutation in a family with FHM type II. Cephalalgia 2006; 26(3): 324-8.
[http://dx.doi.org/10.1111/j.1468-2982.2006.01002.x] [PMID: 16472340]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy