Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Research Article

An Efficient Computational Model for Assessing the Stability Characteristics of Electro-active Natural Bio-resources

Author(s): Divyanshu Jhawar, Pranshu Sharma, Abhishek Sharma , Kathiravan Srinivasan* and Bor-Yann Chen

Volume 13, Issue 4, 2020

Page: [771 - 780] Pages: 10

DOI: 10.2174/2213275912666190809120031

Price: $65

Abstract

Background: The properties of the natural bio-sensors as the fuel after treatment, is beneficial and considered as the most environmental friendly alternative. The microbial fuel cell will help in the bio electricity generation. To use them first, it is important to know the stability and the characteristics of such organic compound. The research presents the computational methods of assessment of stability and characteristics analysis of organic herbs, Syzygium and Citrus.

Objective: MFC has a very vast research area and many scientists are rigorously working on MFCs. Here, we have explained research work related to what we have presented in the paper.

Methods: To compute the stability of these microbial fuel cells, we have used two different methods on each herb, Structural Similarity Index Method (SSIM) and Graph Comparison using their Coordinates (GCC).

Results: This research work provides the results of convergence towards the stability of herbs. Further, this section also presents the performance characteristics of the software algorithms and their comparative results to verify the outcomes of the herb characteristics using both methods.

Conclusion: The proposed work is efficient in finding stability of MFCs on the selected herbs. The approach should work fine on other herbs as well. Machine Learning could have been much useful for this purpose if the availability of the data would have been much high.

Keywords: MFC, similarity index, graph comparison, natural bio-resources, linear interpolation, cyclic voltammetry, syzgium.

Graphical Abstract

[1]
S. Chu, and A. Majumdar, "Opportunities and challenges for a sustainable energy future", Nature, vol. 488, no. 7411, p. 294, 2012.
[2]
B. Xu, B.Y. Chen, C.C. Hsueh, L.J. Qin, and C.T. Chang, "Deciphering characteristics of bicyclic aromatics-mediators for reductive decolorization and bioelectricity generation", Bioresour. Technol., vol. 163, pp. 280-286, 2014.
[http://dx.doi.org/10.1016/j.biortech.2014.04.031 ] [PMID: 24825315]
[3]
B-Y. Chen, M.M. Zhang, C.T. Chang, Y. Ding, K.L. Lin, C.S. Chiou, C.C. Hsueh, and H. Xu, "Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri", Bioresour. Technol., vol. 101, no. 12, pp. 4737-4741, 2010.
[http://dx.doi.org/10.1016/j.biortech.2010.01.133 ] [PMID: 20156682]
[4]
B-Y. Chen, C.M. Ma, K. Han, P.L. Yueh, L.J. Qin, and C.C. Hsueh, "Influence of textile dye and decolorized metabolites on microbial fuel cell-assisted bioremediation", Bioresour. Technol., vol. 200, pp. 1033-1038, 2016.
[http://dx.doi.org/10.1016/j.biortech.2015.10.011 ] [PMID: 26482945]
[5]
K. Han, P.L. Yueh, L.J. Qin, C.C. Hsueh, and B.Y. Chen, "Deciphering synergistic characteristics of microbial fuel cell-assisted dye decolorization", Bioresour. Technol., vol. 196, pp. 746-751, 2015.
[http://dx.doi.org/10.1016/j.biortech.2015.08.015 ] [PMID: 26298386]
[6]
C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, "Microbial fuel cells: From fundamentals to applications. A review", J. Power Sources, vol. 356, pp. 225-244, 2017.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.109 ] [PMID: 28717261]
[7]
M.B. Gholivand, N. Karimian, and G. Malekzadeh, "Computational design and synthesis of a high selective molecularly imprinted polymer for voltammetric sensing of propazine in food samples", Talanta, vol. 89, pp. 513-520, 2012.
[http://dx.doi.org/10.1016/j.talanta.2012.01.001 ] [PMID: 22284525]
[8]
K.A. Vakilian, and J. Massah, "A portable nitrate biosensing device using electrochemistry and spectroscopy", IEEE Sens. J., vol. 18, no. 8, pp. 3080-3089, 2018.
[http://dx.doi.org/10.1109/JSEN.2018.2809493]
[9]
D. Basak, S. Pal, and D.C. Patranabis, "Support vector regression", Neural Info. Proc.-Lett. Rev.,, vol. 11, no. 10, pp. 203-224, 2007.
[10]
Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, "Evaluation of different biological data and computational classification methods for use in protein interaction prediction", Proteins, vol. 63, no. 3, pp. 490-500, 2006.
[http://dx.doi.org/10.1002/prot.20865 ] [PMID: 16450363]
[11]
D.E. Goldberg, and J.H. Holland, "Genetic algorithms and machine learning", Mach. Learn., vol. 3, no. 2, pp. 95-99, 1988.
[http://dx.doi.org/10.1023/A:1022602019183]
[12]
M.F. Ahmad, "Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution."Biochem. Eng. J., vol. 84. pp. 83-90. 2014.
[http://dx.doi.org/10.1016/j.bej.2014.01.004]
[13]
M.A. Kayala, and P.F. Baldi, "A machine learning approach to predict chemical reactions" ,Adv. Neural Inf. Process. Syst., pp. 747-755. 2011.
[14]
P. T. Kissinger, and W. R. Heineman, “Cyclic voltammetry”,J. Chem. Educ. , vol. 60, no. 9, p. 702. 1983.
[http://dx.doi.org/10.1021/ed060p702]
[15]
W-W. Li, H-Q. Yu, and Z. He, "Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies", Energy Environ. Sci., vol. 7, no. 3, pp. 911-924, 2013.
[http://dx.doi.org/10.1039/C3EE43106A]
[16]
P.L. McCarty, J. Bae, and J. Kim, "Domestic wastewater treatment as a net energy producer--can this be achieved?", Environ. Sci. Technol., vol. 45, no. 17, pp. 7100-7106, 2011.
[http://dx.doi.org/10.1021/es2014264 ] [PMID: 21749111]
[17]
A. Garg, V. Vijayaraghavan, S.S. Mahapatra, K. Tai, and C.H. Wong, "Performance evaluation of microbial fuel cell by artificial intelligence methods", Expert Syst. Appl., vol. 41, no. 4, pp. 1389-1399, 2014.
[http://dx.doi.org/10.1016/j.eswa.2013.08.038]
[18]
H. Sun, S. Luo, R. Jin, and Z. He, "Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells", J. Power Sources, vol. 356, pp. 288-298, 2017.
[http://dx.doi.org/10.1016/j.jpowsour.2017.02.051]
[19]
F. Fang, G-L. Zang, M. Sun, and H-Q. Yu, "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach", Appl. Energy, vol. 110, pp. 98-103, 2013.
[http://dx.doi.org/10.1016/j.apenergy.2013.04.017]
[20]
S. Luo, H. Sun, Q. Ping, R. Jin, and Z. He, "A review of modeling bioelectrochemical systems: Engineering and statistical aspects", Energies, vol. 9, p. 111, 2016.
[http://dx.doi.org/10.3390/en9020111]
[21]
H. Sun, S. Luo, R. Jin, and Z. He, "Multitask Lasso model for investigating multimodule design factors, operational factors, and covariates in tubular microbial fuel cells", ACS Sustain. Chem.& Eng., vol. 3, no. 12, pp. 3231-3238, 2015.
[http://dx.doi.org/10.1021/acssuschemeng.5b00820]
[22]
S. Babanova, O. Bretschger, J. Roy, A. Cheung, K. Artyushkova, and P. Atanassov, "Innovative statistical interpretation of Shewanella oneidensis microbial fuel cells data", Phys. Chem. Chem. Phys., vol. 16, no. 19, pp. 8956-8969, 2014.
[http://dx.doi.org/10.1039/C4CP00566J ] [PMID: 24691574]
[23]
B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, "Microbial fuel cells: methodology and technology", Environ. Sci. Technol., vol. 40, no. 17, pp. 5181-5192, 2006.
[http://dx.doi.org/10.1021/es0605016 ] [PMID: 16999087]
[24]
F.J. Hernández-Fernández, A. Pérez de los Ríos, M.J. Salar-García, V.M. Ortiz-Martínez, L.J. Lozano-Blanco, and C. Godínez, "Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment", Fuel Process. Technol., vol. 138, pp. 284-297, 2015.
[http://dx.doi.org/10.1016/j.fuproc.2015.05.022]
[25]
A. Tardast, M. Rahimnejad, G. Najafpour, A. Ghoreyshi, G.C. Premier, G. Bakeri, and S-E. Oh, "Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell", Fuel, vol. 117, pp. 697-703, 2014.
[http://dx.doi.org/10.1016/j.fuel.2013.09.047]
[26]
A.J. Jaeel, "Prediction of sustainable electricity generation in microbial fuel cell by neural network: Effect of anode angle with respect to flow direction", J. Electroanal. Chem., vol. 767, pp. 56-62, 2016.
[http://dx.doi.org/10.1016/j.jelechem.2016.02.015]
[27]
B. Erable, N. Duteanu, S.M.S. Kumar, Y. Feng, M.M. Ghangrekar, and K. Scott, "Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications", Electrochem. Commun., vol. 11, no. 7, pp. 1547-1549, 2009.
[http://dx.doi.org/10.1016/j.elecom.2009.05.057]
[28]
L. Wang, P. Liang, J. Zhang, and X. Huang, "Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells", Bioresour. Technol., vol. 102, no. 8, pp. 5093-5097, 2011.
[http://dx.doi.org/10.1016/j.biortech.2011.01.025 ] [PMID: 21324675]
[29]
R. Kannaiah Goud, and S. Venkata Mohan, "Pre-fermentation of waste as a strategy to enhance the performance of single chambered Microbial Fuel Cell (MFC)", Int. J. Hydrogen Energy, vol. 36, no. 21, pp. 13753-13762, 2011.
[http://dx.doi.org/10.1016/j.ijhydene.2011.07.128]
[30]
B. Rani, R.K. Bansal, and S. Bansal, “Comparison of JPEG and SPIHT image compression algorithms using objective quality measures”, In 2009 International Multimedia., Signal Processing and Communication Technologies: Aligarh, 2009, pp. 90-93.
[31]
M. Cadik, and P. Slavik, "Evaluation of two principal approaches to objective image quality assessment", In , Proceedings Eighth International Conference on Information Visualisation, 2004, pp. 513-518
[http://dx.doi.org/10.1109/IV.2004.1320193]
[32]
I. Begin, and F.P. Ferrie, "Comparison of super-resolution algorithms using image quality measures", In , Proceedings of the The 3rd Canadian Conference on Computer and Robot Vision, IEEE Computer Society, 2006
[http://dx.doi.org/10.1109/CRV.2006.23]
[33]
P. Domingos, "A few useful things to know about machine learning", Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.
[http://dx.doi.org/10.1145/2347736.2347755]
[34]
R.S. Higa, "Plenoptic image compression comparison between JPEG, JPEG2000 and SPITH", Cyber Journals: JSAT, vol. 3, no. 6, pp. 1-6, 2013.
[35]
Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, "Image quality assessment: From error visibility to structural similarity", IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, 2004.
[http://dx.doi.org/10.1109/TIP.2003.819861 ] [PMID: 15376593]
[36]
Z. Wang, and A.C. Bovik, "Mean squared error: Love it or leave it? A new look at signal fidelity measures", IEEE Signal Process. Mag., vol. 26, no. 1, pp. 98-117, 2009.
[http://dx.doi.org/10.1109/MSP.2008.930649]
[37]
T. Caelli, and S. Kosinov, "An eigenspace projection clustering method for inexact graph matching", IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 4, pp. 515-519, 2004.
[http://dx.doi.org/10.1109/TPAMI.2004.1265866 ] [PMID: 15382655]
[38]
E. Meijering, "A chronology of interpolation: From ancient astronomy to modern signal and image processing", Proc. IEEE, vol. 90, no. 3, pp. 319-342, 2002.
[http://dx.doi.org/10.1109/5.993400]
[39]
C. De Boor, "A practical guide to splines.", vol. 27, Springer- Verlag: New York, p. 325, 1978.
[http://dx.doi.org/10.1007/978-1-4612-6333-3]
[40]
S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, and T. Yu, "Scikit-image: image processing in Python", PeerJ, vol. 2, . p. e453, 2014.
[http://dx.doi.org/10.7717/peerj.453 ] [PMID: 25024921]
[41]
G. van Rossum, "Python tutorial", , In, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam . 1995, pp. 1-71.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy