Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

配备强大的刺猬信号和更好的表观遗传记忆的癌症干细胞:寻找癌症治疗方法的途径

卷 19, 期 11, 2019

页: [877 - 884] 页: 8

弟呕挨: 10.2174/1568009619666190808155432

价格: $65

摘要

通过在癌细胞,与癌症相关的基质细胞,间充质干细胞和癌症干细胞(CSC)的存在下显示异质性,在细胞界描绘了肿瘤的复杂性质。 癌症形成的理论之一被认为是癌症CSCs的理论,该理论被称为引发肿瘤发生的来源。 本质上,这些功能强大的CSC配备了高音速刺猬(SHH)信号传导和表观遗传记忆能力,可支持各种肿瘤标志。 的确,自然界通过限制这些干细胞具有转化为CSC的潜力并进而抑制人类和其他生物的高风险来证明其意图。 简而言之,这项小型综述着眼于SHH信号传导的作用,以允许对支持肿瘤标志的CSC内的表观遗传记忆进行重新编程。 此外,本文探讨了减轻SHH信号传导的治疗方法,这些信号可能会导致CSCs的潜在促癌作用被阻断。

关键词: CSC,表观基因组,基因组,抑制剂,肿瘤,声波刺猬信号,治疗剂。

图形摘要

[1]
Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol., 2017, 14(10), 611-629.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[2]
Eun, K.; Ham, S.W.; Kim, H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep., 2017, 50(3), 117-125.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.222] [PMID: 27998397]
[3]
Prasetyanti, P.R.; Medema, J.P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer, 2017, 16(1), 41.
[http://dx.doi.org/10.1186/s12943-017-0600-4] [PMID: 28209166]
[4]
Tandon, I.; Sharma, N.K. Macrophage flipping from foe to friend: A matter of interest in breast carcinoma heterogeneity driving drug resistance. Curr. Cancer Drug Targets, 2019, 19(3), 189-198.
[http://dx.doi.org/10.2174/1568009618666180628102247] [PMID: 29952260]
[5]
Liu, X.; Zhao, T.; Bai, X.; Li, M.; Ren, J.; Wang, M.; Xu, R.; Zhang, S.; Li, H.; Hu, Y.; Xie, L.; Zhang, Y.; Yang, L.; Yan, C.; Zhang, Y. LOC101930370/MiR-1471 Axis modulates the hedgehog signaling pathway in breast cancer. Cell. Physiol. Biochem., 2018, 48(3), 1139-1150.
[http://dx.doi.org/10.1159/000491980] [PMID: 30041193]
[6]
Nilendu, P.; Sarode, S.C.; Jahagirdar, D.; Tandon, I.; Patil, S.; Sarode, G.S.; Pal, J.K.; Sharma, N.K. Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell Oncol. (Dordr.), 2018, 41(4), 353-367.
[http://dx.doi.org/10.1007/s13402-018-0388-2] [PMID: 30027403]
[7]
Hernandez, A.L.; Wang, Y.; Somerset, H.L.; Keysar, S.B.; Aisner, D.L.; Marshall, C.; Bowles, D.W.; Karam, S.D.; Raben, D.; Jimeno, A.; Varella-Garcia, M.; Wang, X.J. Inter and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinoma. Mol. Carcinog., 2018, 25, 117-426.
[8]
Devashree, J. Shruti, Purohit.; Aayushi, Jain.; Sharma, N.K. Export of short RNAs: A bridge between breast carcinoma and their neighboring cells. Front. Oncol., 2016, 6, 147.
[9]
Ajani, J.A.; Song, S.; Hochster, H.S.; Steinberg, I.B. Cancer stem cells: The promise and the potential. Semin. Oncol., 2015, 42(Suppl. 1), S3-S17.
[http://dx.doi.org/10.1053/j.seminoncol.2015.01.001] [PMID: 25839664]
[10]
Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol., 2015, 12(8), 445-464.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[11]
Tanaka, S. Cancer stem cells as therapeutic targets of hepato-biliary-pancreatic cancers. J. Hepatobiliary Pancreat. Sci., 2015, 22(7), 531-537.
[http://dx.doi.org/10.1002/jhbp.248] [PMID: 25874410]
[12]
Lynch, J.; Wang, J.Y. G protein-coupled receptor signaling in stem cells and cancer 2016, 11,17(5)
[http://dx.doi.org/10.3390/ijms17050707]
[13]
Pires, B.; Amorim, Í.; Souza, L.; Rodrigues, J.; Mencalha, A. Targeting Cellular Signaling Pathways in Breast CSCs and its Implication for Cancer Treatment, 2016, 13(11), 5681-5691.
[14]
Wainwright, E.N.; Scaffidi, P. Epigenetics and cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends Cancer, 2017, 3(5), 372-386.
[http://dx.doi.org/10.1016/j.trecan.2017.04.004] [PMID: 28718414]
[15]
Yan, Y.; Wang, Y.; Zhao, P.; Ma, W.; Hu, Z.; Zhang, K. BMI-1 Promotes self-renewal of radio- and temozolomide (TMZ)-resistant breast cancer cells. Reprod. Sci., 2017, 24(12), 1620-1629.
[http://dx.doi.org/10.1177/1933719117697255] [PMID: 28270035]
[16]
Neumann, J.E.; Wefers, A.K.; Lambo, S.; Bianchi, E.; Bockstaller, M.; Dorostkar, M.M.; Meister, V.; Schindler, P.; Korshunov, A.; von Hoff, K.; Nowak, J.; Warmuth-Metz, M.; Schneider, M.R.; Renner-Müller, I.; Merk, D.J.; Shakarami, M.; Sharma, T.; Chavez, L.; Glass, R.; Chan, J.A.; Taketo, M.M.; Neumann, P.; Kool, M.; Schüller, U. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat. Med., 2017, 23(10), 1191-1202.
[http://dx.doi.org/10.1038/nm.4402] [PMID: 28892064]
[17]
Cazet, A.S.; Hui, M.N.; Elsworth, B.L.; Wu, S.Z.; Roden, D.; Chan, C.L.; Skhinas, J.N.; Collot, R.; Yang, J.; Harvey, K.; Johan, M.Z.; Cooper, C.; Nair, R.; Herrmann, D.; McFarland, A.; Deng, N.; Ruiz-Borrego, M.; Rojo, F.; Trigo, J.M.; Bezares, S.; Caballero, R.; Lim, E.; Timpson, P.; O’Toole, S.; Watkins, D.N.; Cox, T.R.; Samuel, M.S.; Martín, M.; Swarbrick, A. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat. Commun., 2018, 9(1), 2897.
[http://dx.doi.org/10.1038/s41467-018-05220-6] [PMID: 30042390]
[18]
Lathia, J.D.; Liu, H. Overview of cancer stem cells and stemness for community oncologists. Target. Oncol., 2017, 12(4), 387-399.
[http://dx.doi.org/10.1007/s11523-017-0508-3] [PMID: 28664387]
[19]
Regan, J.L.; Schumacher, D.; Staudte, S.; Steffen, A.; Haybaeck, J.; Keilholz, U.; Schweiger, C.; Golob-Schwarzl, N.; Mumberg, D.; Henderson, D.; Lehrach, H.; Regenbrecht, C.R.A.; Schäfer, R.; Lange, M. Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep., 2017, 21(10), 2813-2828.
[http://dx.doi.org/10.1016/j.celrep.2017.11.025] [PMID: 29212028]
[20]
Valenti, G.; Quinn, H.M.; Heynen, G.J.J.E.; Lan, L.; Holland, J.D.; Vogel, R.; Wulf-Goldenberg, A.; Birchmeier, W. Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res., 2017, 77(8), 2134-2147.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3490] [PMID: 28202523]
[21]
Deshmukh, A.; Binju, M.; Arfuso, F.; Newsholme, P.; Dharmarajan, A. Role of epigenetic modulation in cancer stem cell fate. Int. J. Biochem. Cell Biol., 2017, 90, 9-16.
[http://dx.doi.org/10.1016/j.biocel.2017.07.003] [PMID: 28711634]
[22]
Yang, Z.; Zhang, C.; Qi, W.; Cui, Y.; Xuan, Y. GLI1 promotes cancer stemness through intracellular signaling pathway PI3K/Akt/NFκB in colorectal adenocarcinoma. Exp. Cell Res., 2018, 373(1-2), 145-154.
[http://dx.doi.org/10.1016/j.yexcr.2018.10.006] [PMID: 30321514]
[23]
Di Magno, L.; Coni, S.; Di Marcotullio, L.; Canettieri, G. Digging a hole under Hedgehog: Downstream inhibition as an emerging anticancer strategy. Biochim. Biophys. Acta, 2015, 1856(1), 62-72.
[PMID: 26080084]
[24]
Della Corte, C.M.; Viscardi, G.; Papaccio, F.; Esposito, G.; Martini, G.; Ciardiello, D.; Martinelli, E.; Ciardiello, F.; Morgillo, F. Implication of the hedgehog pathway in hepatocellular carcinoma. World J. Gastroenterol., 2017, 23(24), 4330-4340.
[http://dx.doi.org/10.3748/wjg.v23.i24.4330] [PMID: 28706416]
[25]
Infante, P.; Faedda, R.; Bernardi, F.; Bufalieri, F.; Lospinoso Severini, L.; Alfonsi, R.; Mazzà, D.; Siler, M.; Coni, S.; Po, A.; Petroni, M.; Ferretti, E.; Mori, M.; De Smaele, E.; Canettieri, G.; Capalbo, C.; Maroder, M.; Screpanti, I.; Kool, M.; Pfister, S.M.; Guardavaccaro, D.; Gulino, A.; Di Marcotullio, L. Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat. Commun., 2018, 9(1), 976.
[http://dx.doi.org/10.1038/s41467-018-03339-0] [PMID: 29515120]
[26]
Huang, D.; Wang, Y.; Tang, J.; Luo, S. Molecular mechanisms of suppressor of fused in regulating the hedgehog signalling pathway. Oncol. Lett., 2018, 15(5), 6077-6086.
[http://dx.doi.org/10.3892/ol.2018.8142] [PMID: 29725392]
[27]
Tang, Y.; Gholamin, S.; Schubert, S.; Willardson, M.I.; Lee, A.; Bandopadhayay, P.; Bergthold, G.; Masoud, S.; Nguyen, B.; Vue, N.; Balansay, B.; Yu, F.; Oh, S.; Woo, P.; Chen, S.; Ponnuswami, A.; Monje, M.; Atwood, S.X.; Whitson, R.J.; Mitra, S.; Cheshier, S.H.; Qi, J.; Beroukhim, R.; Tang, J.Y.; Wechsler-Reya, R.; Oro, A.E.; Link, B.A.; Bradner, J.E.; Cho, Y.J. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat. Med., 2014, 20(7), 732-740.
[http://dx.doi.org/10.1038/nm.3613] [PMID: 24973920]
[28]
Lin, J.; Tan, H.; Nie, Y.; Wu, D.; Zheng, W.; Lin, W.; Zhu, Z.; Yang, B.; Chen, X.; Chen, T. Krüppel-like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway. Cancer Sci., 2019, 110(4), 1220-1231.
[http://dx.doi.org/10.1111/cas.13961] [PMID: 30719823]
[29]
Shi, X.; Zhang, Z.; Zhan, X.; Cao, M.; Satoh, T.; Akira, S.; Shpargel, K.; Magnuson, T.; Li, Q.; Wang, R.; Wang, C.; Ge, K.; Wu, J. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat. Commun., 2014, 5, 5425.
[http://dx.doi.org/10.1038/ncomms6425] [PMID: 25370275]
[30]
Malatesta, M.; Steinhauer, C.; Mohammad, F.; Pandey, D.P.; Squatrito, M.; Helin, K. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res., 2013, 73(20), 6323-6333.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4660] [PMID: 23943798]
[31]
Tang, Y.A.; Chen, Y.F.; Bao, Y.; Mahara, S.; Yatim, S.M.J.M.; Oguz, G.; Lee, P.L.; Feng, M.; Cai, Y.; Tan, E.Y.; Fong, S.S.; Yang, Z.H.; Lan, P.; Wu, X.J.; Yu, Q. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(26), E5990-E5999.
[http://dx.doi.org/10.1073/pnas.1801348115] [PMID: 29891662]
[32]
Bora-Singhal, N.; Perumal, D.; Nguyen, J.; Chellappan, S. Gli1-mediated regulation of Sox2 facilitates self-renewal of stem-like cells and confers resistance to EGFR inhibitors in non-small cell lung cancer. Neoplasia, 2015, 17(7), 538-551.
[http://dx.doi.org/10.1016/j.neo.2015.07.001] [PMID: 26297432]
[33]
Aval, S.F.; Lotfi, H.; Sheervalilou, R.; Zarghami, N. Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed. Pharmacother., 2017, 91, 849-860.
[http://dx.doi.org/10.1016/j.biopha.2017.05.020] [PMID: 28501774]
[34]
Miele, E.; Po, A.; Begalli, F.; Antonucci, L.; Mastronuzzi, A.; Marras, C.E.; Carai, A.; Cucchi, D.; Abballe, L.; Besharat, Z.M.; Catanzaro, G.; Infante, P.; Di Marcotullio, L.; Canettieri, G.; De Smaele, E.; Screpanti, I.; Locatelli, F.; Ferretti, E. β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer, 2017, 17(1), 488.
[http://dx.doi.org/10.1186/s12885-017-3477-0] [PMID: 28716052]
[35]
Levanat, S.; Sabol, M.; Musani, V.; Ozretic, P.; Trnski, D. Hedgehog signaling pathway as genetic and epigenetic target in ovarian tumors. Curr. Pharm. Des., 2017, 23(1), 73-94.
[PMID: 27719639]
[36]
Samadani, A.A.; Norollahi, S.E.; Rashidy-Pour, A.; Mansour-Ghanaei, F.; Nemati, S.; Joukar, F.; Afshar, A.M.; Ghazanfari, S.; Safizadeh, M.; Rostami, P.; Gatei, M. Cancer signaling pathways with a therapeutic approach: An overview in epigenetic regulations of cancer stem cells. Biomed. Pharmacother., 2018, 108, 590-599.
[http://dx.doi.org/10.1016/j.biopha.2018.09.048] [PMID: 30243093]
[37]
Fattahi, S.; Pilehchian Langroudi, M.; Akhavan-Niaki, H. Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development. J. Cell. Physiol., 2018, 233(8), 5726-5735.
[http://dx.doi.org/10.1002/jcp.26506] [PMID: 29380372]
[38]
Wu, J.; Zhu, P.; Lu, T.; Du, Y.; Wang, Y.; He, L.; Ye, B.; Liu, B.; Yang, L.; Wang, J.; Gu, Y.; Lan, J.; Hao, Y.; He, L.; Fan, Z. The long noncoding RNA LncHDAC2 drives the self-renewal of liver CSCs via activation of Hedgehog Signaling. J. Hepatol., 2018, 45, 653-662.
[39]
Katoh, M. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin. Sci. (Lond.), 2019, 133(8), 953-970.
[http://dx.doi.org/10.1042/CS20180845] [PMID: 31036756]
[40]
Kim, S.; Kim, Y.; Kong, J.; Kim, E.; Choi, J.H.; Yuk, H.D.; Lee, H.; Kim, H.R.; Lee, K.H.; Kang, M.; Roe, J.S.; Moon, K.C.; Kim, S.; Ku, J.H.; Shin, K. Epigenetic regulation of mammalian Hedgehog signaling to the stroma determines the molecular subtype of bladder cancer. eLife, 2019. 8e43024
[http://dx.doi.org/10.7554/eLife.43024] [PMID: 31036156]
[41]
Rallis, G.; Koletsa, T.; Saridaki, Z.; Manousou, K.; Koliou, G.A.; Kostopoulos, I.; Kotoula, V.; Makatsoris, T.; Kourea, H.P.; Raptou, G.; Chrisafi, S.; Samantas, E.; Papaparaskeva, K.; Pazarli, E.; Papakostas, P.; Kafiri, G.; Mauri, D.; Papoudou-Bai, A.; Christodoulou, C.; Petraki, K.; Dombros, N.; Pectasides, D.; Fountzilas, G. Association of notch and hedgehog pathway activation with prognosis in early-stage colorectal cancer. Anticancer Res., 2019, 39(4), 2129-2138.
[http://dx.doi.org/10.21873/anticanres.13326] [PMID: 30952759]
[42]
Riaz, S.K.; Ke, Y.; Wang, F.; Kayani, M.A.; Malik, M.F.A. Influence of SHH/GLI1 axis on EMT mediated migration and invasion of breast cancer cells. Sci. Rep., 2019, 9(1), 6620.
[http://dx.doi.org/10.1038/s41598-019-43093-x] [PMID: 31036836]
[43]
Taylor, R.; Long, J.; Yoon, J.W.; Childs, R.; Sylvestersen, K.B.; Nielsen, M.L.; Leong, K.F.; Iannaccone, S.; Walterhouse, D.O.; Robbins, D.J.; Iannaccone, P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst.), 2019, 79, 10-21.
[http://dx.doi.org/10.1016/j.dnarep.2019.04.011] [PMID: 31085420]
[44]
Katoh, Y.; Katoh, M. WNT antagonist, SFRP1, is Hedgehog signaling target. Int. J. Mol. Med., 2006, 17(1), 171-175.
[http://dx.doi.org/10.3892/ijmm.17.1.171] [PMID: 16328026]
[45]
Chun, S.G.; Zhou, W.; Yee, N.S. Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol. Ther., 2009, 8(14), 1328-1339.
[http://dx.doi.org/10.4161/cbt.8.14.8633] [PMID: 19421011]
[46]
Chun, S.G.; Park, H.; Pandita, R.K.; Horikoshi, N.; Pandita, T.K.; Schwartz, D.L.; Yordy, J.S. Targeted inhibition of histone deacetylases and hedgehog signaling suppress tumor growth and homologous recombination in aerodigestive cancers. Am. J. Cancer Res., 2015, 5(4), 1337-1352.
[PMID: 26101701]
[47]
Zuo, M.; Rashid, A.; Churi, C.; Vauthey, J.N.; Chang, P.; Li, Y.; Hung, M.C.; Li, D.; Javle, M. Novel therapeutic strategy targeting the Hedgehog signalling and mTOR pathways in biliary tract cancer. Br. J. Cancer, 2015, 112(6), 1042-1051.
[http://dx.doi.org/10.1038/bjc.2014.625] [PMID: 25742482]
[48]
Benvenuto, M.; Masuelli, L.; De Smaele, E.; Fantini, M.; Mattera, R.; Cucchi, D.; Bonanno, E.; Di Stefano, E.; Frajese, G.V.; Orlandi, A.; Screpanti, I.; Gulino, A.; Modesti, A.; Bei, R. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget, 2016, 7(8), 9250-9270.
[http://dx.doi.org/10.18632/oncotarget.7062] [PMID: 26843616]
[49]
Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer, 2017, 24(5), 683-693.
[http://dx.doi.org/10.1007/s12282-017-0757-0] [PMID: 28144905]
[50]
Paluszczak, J.; Wiśniewska, D.; Kostrzewska-Poczekaj, M.; Kiwerska, K.; Grénman, R.; Mielcarek-Kuchta, D.; Jarmuż-Szymczak, M. Prognostic significance of the methylation of Wnt pathway antagonists-CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling-ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas. Clin. Oral Investig., 2017, 21(5), 1777-1788.
[http://dx.doi.org/10.1007/s00784-016-1946-5] [PMID: 27553089]
[51]
Fareh, M.; Turchi, L.; Virolle, V.; Debruyne, D.; Almairac, F.; de-la-Forest Divonne, S.; Paquis, P.; Preynat-Seauve, O.; Krause, K.H.; Chneiweiss, H.; Virolle, T. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ., 2012, 19(2), 232-244.
[http://dx.doi.org/10.1038/cdd.2011.89] [PMID: 21720384]
[52]
Ahmad, A.; Maitah, M.Y.; Ginnebaugh, K.R.; Li, Y.; Bao, B.; Gadgeel, S.M.; Sarkar, F.H. Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J. Hematol. Oncol., 2013, 6(1), 77.
[http://dx.doi.org/10.1186/1756-8722-6-77] [PMID: 24199791]
[53]
Yu, F.; Zheng, Y.; Hong, W.; Chen, B.; Dong, P.; Zheng, J. MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Mol. Med. Rep., 2015, 12(6), 8121-8128.
[http://dx.doi.org/10.3892/mmr.2015.4452] [PMID: 26499180]
[54]
Xu, L.; Liu, H.; Yan, Z.; Sun, Z.; Luo, S.; Lu, Q. Inhibition of the Hedgehog signaling pathway suppresses cell proliferation by regulating the Gli2/miR-124/AURKA axis in human glioma cells. Int. J. Oncol., 2017, 50(5), 1868-1878.
[http://dx.doi.org/10.3892/ijo.2017.3946] [PMID: 28393219]
[55]
Besharat, Z.M.; Abballe, L.; Cicconardi, F.; Bhutkar, A.; Grassi, L.; Le Pera, L.; Moretti, M.; Chinappi, M.; D’Andrea, D.; Mastronuzzi, A.; Ianari, A.; Vacca, A.; De Smaele, E.; Locatelli, F.; Po, A.; Miele, E.; Ferretti, E. Foxm1 controls a pro-stemness microRNA network in neural stem cells. Sci. Rep., 2018, 8(1), 3523.
[http://dx.doi.org/10.1038/s41598-018-21876-y] [PMID: 29476172]
[56]
Kim, J.; Hyun, J.; Wang, S.; Lee, C.; Jung, Y. MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver. Cell Death Dis., 2018, 9(7), 721.
[http://dx.doi.org/10.1038/s41419-018-0762-z] [PMID: 29915286]
[57]
Long, J.; Li, B.; Rodriguez-Blanco, J.; Pastori, C.; Volmar, C.H.; Wahlestedt, C.; Capobianco, A.; Bai, F.; Pei, X.H.; Ayad, N.G.; Robbins, D.J. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J. Biol. Chem., 2014, 289(51), 35494-35502.
[http://dx.doi.org/10.1074/jbc.M114.595348] [PMID: 25355313]
[58]
Armas-López, L.; Piña-Sánchez, P.; Arrieta, O.; de Alba, E.G.; Ortiz-Quintero, B.; Santillán-Doherty, P.; Christiani, D.C.; Zúñiga, J.; Ávila-Moreno, F. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget, 2017, 8(40), 67056-67081.
[http://dx.doi.org/10.18632/oncotarget.17715] [PMID: 28978016]
[59]
Pignot, G.; Vieillefond, A.; Vacher, S.; Zerbib, M.; Debre, B.; Lidereau, R.; Amsellem-Ouazana, D.; Bieche, I. Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br. J. Cancer, 2012, 106(6), 1177-1186.
[http://dx.doi.org/10.1038/bjc.2012.55] [PMID: 22361633]
[60]
Raven, P.A.; Lysakowski, S.; Tan, Z.; D’Costa, N.M.; Moskalev, I.; Frees, S.; Struss, W.; Matsui, Y.; Narita, S.; Buttyan, R.; Chavez-Munoz, C.; So, A.I. Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer. J. Cell. Physiol., 2019, 234(11), 20634-20647.
[http://dx.doi.org/10.1002/jcp.28669] [PMID: 31012113]
[61]
Ma, H.; Chen, Q.; Zhu, F.; Zheng, J.; Li, J.; Zhang, H.; Chen, S.; Xing, H.; Luo, L.; Zheng, L.T.; He, S.; Zhang, X. Discovery and characterization of a potent Wnt and hedgehog signaling pathways dual inhibitor. Eur. J. Med. Chem., 2018, 149, 110-121.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.034] [PMID: 29499483]
[62]
Abidi, A. Hedgehog signaling pathway: a novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J. Pharmacol., 2014, 46(1), 3-12.
[http://dx.doi.org/10.4103/0253-7613.124884] [PMID: 24550577]
[63]
Zhang, M.; Tan, S.; Yu, D.; Zhao, Z.; Zhang, B.; Zhang, P.; Lv, C.; Zhou, Q.; Cao, Z. Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicol. Appl. Pharmacol., 2019, 365, 1-8.
[http://dx.doi.org/10.1016/j.taap.2019.01.002] [PMID: 30610878]
[64]
Melamed, J.R.; Ioele, S.A.; Hannum, A.J.; Ullman, V.M.; Day, E.S. Polyethylenimine-spherical nucleic acid nanoparticles against gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol. Pharm., 2018, 15(11), 5135-5145.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00707] [PMID: 30260647]
[65]
Yang, W.; Liu, Y.; Gao, R.; Yu, H.; Sun, T. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett., 2018, 415, 164-176.
[http://dx.doi.org/10.1016/j.canlet.2017.12.005] [PMID: 29222038]
[66]
Krauss, S.; Foerster, J.; Schneider, R.; Schweiger, S. Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res., 2008, 68(12), 4658-4665.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6174] [PMID: 18559511]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy