Research Article

妊娠期自然杀伤细胞与滋养层细胞相互作用的特征

卷 20, 期 3, 2020

页: [202 - 219] 页: 18

弟呕挨: 10.2174/1566524019666190808103227

价格: $65

摘要

背景:母体自然杀伤细胞(NK细胞)是子宫胎盘床中盛行的白细胞种群。当前关于来自胎盘微环境的细胞因子对滋养层细胞和NK细胞受体表达的影响的描述是不充分和矛盾的。 NK细胞迁移通过滋养层细胞的能力的信息不足。 目的:评估健康妊娠中期和中期妊娠胎盘培养过程中获得的条件培养基对滋养层细胞和NK细胞表型的影响以及对滋养层细胞层NK细胞粘附和迁移的影响。 结果:我们确定从妊娠中期和晚期妊娠胎盘获得的条件培养基均能增加滋养层细胞CD106,CD49e,CD49a,CD31,CD51 / 61和整联蛋白β6的表达强度。从孕早期胎盘获得的条件培养基可增加NK细胞表达CD11a,CD29,CD49d,CD58,CD29的强度。来自妊娠晚期胎盘的条件培养基的存在导致NK细胞表达更强烈的CD29,CD49d,CD11a,CD29,CD49d和CD58。与存在早孕胎盘的条件培养基相比,在存在早孕胎盘的条件培养基中NK细胞通过滋养细胞的迁移增加了。这可能与NK细胞CD18的表达增加有关。 结论:孕早期的胎盘分泌产物增加了滋养层细胞和NK细胞的粘附受体表达。在这些条件下,滋养细胞能够确保NK细胞的粘附和迁移。

关键词: NK细胞,滋养细胞,迁移,粘附,受体,胎盘,NK-92,Jeg-3。

[1]
Caligiuri MA. Human natural killer cells. Blood 2008; 112(3): 461-9.
[http://dx.doi.org/10.1182/blood-2007-09-077438] [PMID: 18650461]
[2]
Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197-223.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.197] [PMID: 11244035]
[3]
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503-10.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[4]
Robertson MJ, Caligiuri MA, Manley TJ, Levine H, Ritz J. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 1990; 145(10): 3194-201.
[PMID: 1700001]
[5]
Lysakova-Devine T, O’Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol 2014; 96(6): 981-90.
[http://dx.doi.org/10.1189/jlb.1RU0514-241R] [PMID: 25246601]
[6]
Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6(6): 791-8.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a137430] [PMID: 1757516]
[7]
Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Front Immunol 2017; 8: 467.
[http://dx.doi.org/10.3389/fimmu.2017.00467] [PMID: 28484462]
[8]
Le Bouteiller P. Human decidual NK cells: unique and tightly regulated effector functions in healthy and pathogen-infected pregnancies. Front Immunol 2013; 4: 404.
[http://dx.doi.org/10.3389/fimmu.2013.00404] [PMID: 24324468]
[9]
Vacca P, Moretta L, Moretta A, Mingari MC. Origin, phenotype and function of human natural killer cells in pregnancy. Trends Immunol 2011; 32(11): 517-23.
[http://dx.doi.org/10.1016/j.it.2011.06.013] [PMID: 21889405]
[10]
Vacca P, Pietra G, Falco M, et al. Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function. Blood 2006; 108(13): 4078-85.
[http://dx.doi.org/10.1182/blood-2006-04-017343] [PMID: 16931625]
[11]
Jabrane-Ferrat N, Siewiera J. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 2014; 141(4): 490-7.
[http://dx.doi.org/10.1111/imm.12218] [PMID: 24256296]
[12]
Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12(9): 1065-74.
[http://dx.doi.org/10.1038/nm1452] [PMID: 16892062]
[13]
Hanna J, Wald O, Goldman-Wohl D, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 2003; 102(5): 1569-77.
[http://dx.doi.org/10.1182/blood-2003-02-0517] [PMID: 12730110]
[14]
Ailamazian EK, Stepanova OI, Sel'kov SA, Sokolov DI. Cells of immune system of mother and trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose Vestnik Rossiiskoi akademii meditsinskikh nauk / Rossiiskaia akademiia meditsinskikh nauk 2013; 11: 12-21.
[15]
Fitzgerald JS, Poehlmann TG, Schleussner E, Markert UR. Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3). Hum Reprod Update 2008; 14(4): 335-44.
[http://dx.doi.org/10.1093/humupd/dmn010] [PMID: 18424427]
[16]
Carosella ED, Gregori S, LeMaoult J. The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood 2011; 118(25): 6499-505.
[http://dx.doi.org/10.1182/blood-2011-07-370742] [PMID: 21960588]
[17]
Li C, Houser BL, Nicotra ML, Strominger JL. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci USA 2009; 106(14): 5767-72.
[http://dx.doi.org/10.1073/pnas.0901173106] [PMID: 19304799]
[18]
Wallace AE, Fraser R, Cartwright JE. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18(4): 458-71.
[http://dx.doi.org/10.1093/humupd/dms015] [PMID: 22523109]
[19]
Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update 2007; 13(2): 121-41.
[http://dx.doi.org/10.1093/humupd/dml048] [PMID: 17068222]
[20]
Kabir-Salmani M, Shiokawa S, Akimoto Y, Sakai K, Iwashita M. The role of alpha(5)beta(1)-integrin in the IGF-I-induced migration of extravillous trophoblast cells during the process of implantation. Mol Hum Reprod 2004; 10(2): 91-7.
[http://dx.doi.org/10.1093/molehr/gah014] [PMID: 14742693]
[21]
Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci 2010; 17(3): 209-18.
[http://dx.doi.org/10.1177/1933719109349962] [PMID: 20065301]
[22]
Sokolov DI, Kolobov AV, Lesnichija MV, et al. Regulatory mechanisms for apoptosis in placental tissue during normal pregnancy and gestosis-complicated pregnancy. Bull Exp Biol Med 2009; 148(5): 766-70.
[http://dx.doi.org/10.1007/s10517-010-0812-8] [PMID: 20396788]
[23]
Sokolov DI, Lesnichiya MV, Selyutin AV, Klimova VA, Arzhanova ON, Selkov SA. The role of cytokines in the control of placenta in normal and preeclampsia. Immunology (Russia) 2009; 30(1): 22-6.
[24]
Mikhailova VA, Bazhenov DO, Belikova ME, et al. Inter-actions of NK cells and trophoblast cells. Methodological aspects. Bull Exp Biol Med 2018; 165(4): 548-53.
[http://dx.doi.org/10.1007/s10517-018-4212-9] [PMID: 30121921]
[25]
Ma L, Li G, Cao G, et al. dNK cells facilitate the interaction between trophoblastic and endothelial cells via VEGF-C and HGF. Immunol Cell Biol 2017; 95(8): 695-704.
[http://dx.doi.org/10.1038/icb.2017.45] [PMID: 28653669]
[26]
Co EC, Gormley M, Kapidzic M, et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotro-phoblasts during human pregnancy. Biol Reprod 2013; 88(6): 155.
[http://dx.doi.org/10.1095/biolreprod.112.099465] [PMID: 23553431]
[27]
Carayannopoulos LN, Barks JL, Yokoyama WM, Riley JK. Murine trophoblast cells induce NK cell interferon-gamma production through KLRK1. Biol Reprod 2010; 83(3): 404-14.
[http://dx.doi.org/10.1095/biolreprod.110.084509] [PMID: 20484740]
[28]
Hu Y, Dutz JP, MacCalman CD, Yong P, Tan R, von Dadelszen P. Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-gamma. J Immunol 2006; 177(12): 8522-30.
[http://dx.doi.org/10.4049/jimmunol.177.12.8522] [PMID: 17142750]
[29]
Kohler PO, Bridson WE. Isolation of hormone-producing clonal lines of human choriocarcinoma. J Clin Endocrinol Metab 1971; 32(5): 683-7.
[http://dx.doi.org/10.1210/jcem-32-5-683] [PMID: 5103722]
[30]
Jingting C, Yangde Z, Yi Z, Huining L, Rong Y, Yu Z. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol Oncol 2007; 107(1): 22-9.
[http://dx.doi.org/10.1016/j.ygyno.2007.05.042] [PMID: 17688924]
[31]
Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8(4): 652-8.
[PMID: 8152260]
[32]
Komatsu F, Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol Res 1998; 10(10): 483-9.
[PMID: 10338151]
[33]
Dunk C, Shams M, Nijjar S, et al. Angiopoietin-1 and angiopoietin-2 activate trophoblast Tie-2 to promote growth and migration during placental development. Am J Pathol 2000; 156(6): 2185-99.
[http://dx.doi.org/10.1016/S0002-9440(10)65089-4] [PMID: 10854239]
[34]
Hinck L, Näthke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 1994; 125(6): 1327-40.
[http://dx.doi.org/10.1083/jcb.125.6.1327] [PMID: 8207061]
[35]
Austgulen R, Espevik T, Mecsei R, Scott H. Expression of receptors for tumor necrosis factor in human placenta at term. Acta Obstet Gynecol Scand 1992; 71(6): 417-24.
[http://dx.doi.org/10.3109/00016349209021090] [PMID: 1326840]
[36]
Bowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta 2002; 23(4): 257-73.
[http://dx.doi.org/10.1053/plac.2001.0782] [PMID: 11969336]
[37]
Arroyo JA, Winn VD. Vasculogenesis and angiogenesis in the IUGR placenta. Semin Perinatol 2008; 32(3): 172-7.
[http://dx.doi.org/10.1053/j.semperi.2008.02.006] [PMID: 18482617]
[38]
De Falco M, Penta R, Laforgia V, Cobellis L, De Luca A. Apoptosis and human placenta: expression of proteins belonging to different apoptotic pathways during pregnancy. J Exp Clin Cancer Res 2005; 24(1): 25-33.
[PMID: 15943028]
[39]
Pazos P, Lima L, Diéguez C, García MC. Energy balance regulating neuropeptides are expressed through pregnancy and regulated by interleukin-6 deficiency in mouse placenta. Int J Endocrinol 2014; 2014: 537603
[http://dx.doi.org/10.1155/2014/537603] [PMID: 24744782]
[40]
Bulgaroni V, Lombardo P, Rivero-Osimani V, et al. Environmental pesticide exposure modulates cytokines, arginase and ornithine decarboxylase expression in human placenta. Reprod Toxicol 2013; 39: 23-32.
[http://dx.doi.org/10.1016/j.reprotox.2013.03.010] [PMID: 23557688]
[41]
Szukiewicz D. Cytokines in placental physiology and disease. Mediators Inflamm 2012; 2012: 640823
[http://dx.doi.org/10.1155/2012/640823] [PMID: 22933831]
[42]
Ostankova YV, Klimovskaya YS, Gorskaya OA, et al. Expression of thrombospondin-1 gene mRNA and protein in the placenta in gestosis. Bull Exp Biol Med 2011; 151(2): 215-8.
[http://dx.doi.org/10.1007/s10517-011-1292-1] [PMID: 22238753]
[43]
Lvova TY, Stepanova OI, Furaeva KN, Korenkov DA, Sokolov DI, Selkov SA. Effects of placental tissue secretory products on the formation of vascular tubules by EA.Hy926 endothelial cells. Bull Exp Biol Med 2013; 155(1): 108-12.
[http://dx.doi.org/10.1007/s10517-013-2092-6] [PMID: 23667885]
[44]
Stepanova OI, Safronova NU, Furaeva KN, Lvova TU, Sokolov DI, Selkov SA. Effects of placental secretory factors on cytokine production by endothelial cells. Bull Exp Biol Med 2013; 154(3): 375-8.
[http://dx.doi.org/10.1007/s10517-013-1954-2] [PMID: 23484204]
[45]
Xuan YH, Choi YL, Shin YK, et al. Expression of TGF-beta signaling proteins in normal placenta and gestational trophoblastic disease. Histol Histopathol 2007; 22(3): 227-34.
[PMID: 17163397]
[46]
Wilczyński JR. Th1/Th2 cytokines balance--yin and yang of reproductive immunology. Eur J Obstet Gynecol Reprod Biol 2005; 122(2): 136-43.
[http://dx.doi.org/10.1016/j.ejogrb.2005.03.008] [PMID: 15893871]
[47]
Schäfer-Somi S. Cytokines during early pregnancy of mammals: a review. Anim Reprod Sci 2003; 75(1-2): 73-94.
[http://dx.doi.org/10.1016/S0378-4320(02)00222-1] [PMID: 12535585]
[48]
Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front Immunol 2014; 5: 253.
[http://dx.doi.org/10.3389/fimmu.2014.00253] [PMID: 24904596]
[49]
Sitras V, Fenton C, Paulssen R, Vårtun Å, Acharya G. Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS One 2012; 7(3): e33294
[http://dx.doi.org/10.1371/journal.pone.0033294] [PMID: 22442682]
[50]
Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Proteome differences in the first- and third-trimester human placentas. Reprod Sci 2015; 22(4): 462-8.
[http://dx.doi.org/10.1177/1933719114549857] [PMID: 25201741]
[51]
Bischof P, Meisser A, Campana A. Paracrine and autocrine regulators of trophoblast invasion. Placenta 2000; 21: 55-60.
[52]
Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 2004; 25(2-3): 103-13.
[http://dx.doi.org/10.1016/j.placenta.2003.10.004] [PMID: 14972443]
[53]
Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 2004; 25(2-3): 114-26.
[http://dx.doi.org/10.1016/j.placenta.2003.10.009] [PMID: 14972444]
[54]
Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 2004; 25(2-3): 127-39.
[http://dx.doi.org/10.1016/j.placenta.2003.10.010] [PMID: 14972445]
[55]
Sokolov DI, Lesnichiya MV, Selutin AV, Klimova VA, Arzhanova ON, Selkov SA. The role of cytokines in control of placenta developing in the norm and at preeclampsia Immunology (Russia). Immunologiya 2009; 1: 22-7.
[56]
Yurdakan G, Ekem TE, Bahadir B, Gun BD, Kuzey GM, Ozdamar SO. Expression of adhesion molecules in first trimester spontaneous abortions and their role in abortion pathogenesis. Acta Obstet Gynecol Scand 2008; 87(7): 775-82.
[http://dx.doi.org/10.1080/00016340802177412] [PMID: 18607815]
[57]
Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacological reports 2009; 61: 22-32.
[58]
Golias C, Batistatou A, Bablekos G, et al. Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes 2011; 18(3): 19-32.
[http://dx.doi.org/10.3109/15419061.2011.606381] [PMID: 21892874]
[59]
Harris ES, Nelson WJ. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 2010; 22(5): 651-8.
[http://dx.doi.org/10.1016/j.ceb.2010.07.006] [PMID: 20708398]
[60]
Groten T, Gebhard N, Kreienberg R, Schleussner E, Reister F, Huppertz B. Differential expression of VE-cadherin and VEGFR2 in placental syncytiotrophoblast during preeclampsia - New perspectives to explain the pathophysiology. Placenta 2010; 31(4): 339-43.
[http://dx.doi.org/10.1016/j.placenta.2010.01.014] [PMID: 20167365]
[61]
Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003; 69(1): 1-7.
[http://dx.doi.org/10.1095/biolreprod.102.014977] [PMID: 12620937]
[62]
Cartwright JE, Fraser R, Leslie K, Wallace AE, James JL. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction 2010; 140(6): 803-13.
[http://dx.doi.org/10.1530/REP-10-0294] [PMID: 20837731]
[63]
Windsperger K, Dekan S, Pils S, et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod 2017; 32(6): 1208-17.
[http://dx.doi.org/10.1093/humrep/dex058] [PMID: 28369440]
[64]
Chen Y, Zhang H, Han F, et al. The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion. J Cell Physiol 2018; 233(3): 2257-69.
[http://dx.doi.org/10.1002/jcp.26098] [PMID: 28708243]
[65]
Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 2014; 355(3): 607-19.
[http://dx.doi.org/10.1007/s00441-013-1779-3] [PMID: 24435645]
[66]
Somersalo K, Tarkkanen J, Patarroyo M, Saksela E. Involvement of beta 2-integrins in the migration of human natural killer cells. J Immunol 1992; 149(2): 590-8.
[PMID: 1378070]
[67]
Burrows TD, King A, Loke YW. The role of integrins in adhesion of decidual NK cells to extracellular matrix and decidual stromal cells. Cell Immunol 1995; 166(1): 53-61.
[http://dx.doi.org/10.1006/cimm.1995.0007] [PMID: 7585981]
[68]
Kim MJ, Lee JC, Lee JJ, et al. Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol 2008; 29(1): 28-34.
[http://dx.doi.org/10.1159/000132568] [PMID: 18497546]
[69]
Feyaerts D, Kuret T, van Cranenbroek B, et al. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum Reprod 2018; 33(3): 441-51.
[http://dx.doi.org/10.1093/humrep/dey001] [PMID: 29447367]
[70]
Sharkey AM, Xiong S, Kennedy PR, et al. Tissue-specific education of decidual NK cells. J Immunol 2015; 195(7): 3026-32.
[http://dx.doi.org/10.4049/jimmunol.1501229] [PMID: 26320253]
[71]
Vaporciyan AA, Jones ML, Ward PA. Rapid analysis of leukocyte-endothelial adhesion. J Immunol Methods 1993; 159(1-2): 93-100.
[http://dx.doi.org/10.1016/0022-1759(93)90145-W] [PMID: 8445268]
[72]
Bath PM, Booth RF, Hassall DG. Monocyte-lymphocyte discrimination in a new microtitre-based adhesion assay. J Immunol Methods 1989; 118(1): 59-65.
[http://dx.doi.org/10.1016/0022-1759(89)90053-7] [PMID: 2538512]
[73]
Hu J, Xiao F, Hao X, Bai S, Hao J. Inhibition of monocyte adhesion to brain-derived endothelial cells by dual functional RNA chimeras. Mol Ther Nucleic Acids 2014.3e209 .
[http://dx.doi.org/10.1038/mtna.2014.60] [PMID: 25368913]
[74]
Poussin C, Gallitz I, Schlage W. Mechanism of an indirect effect of aqueous cigarette smoke extract on the adhesion of monocytic cells to endothelial cells in an in vitro assay revealed by transcriptomics analysis. Toxicology In Vitro 2014; 28(5): 896-908.
[75]
Ge Y, Deng T, Zheng X. Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay. Acta Biochim Biophys Sin (Shanghai) 2009; 41(3): 256-62.
[http://dx.doi.org/10.1093/abbs/gmp009] [PMID: 19280065]
[76]
Wu X, Li DJ, Yuan MM, Zhu Y, Wang MY. The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells. Biol Reprod 2004; 70(6): 1877-85.
[http://dx.doi.org/10.1095/biolreprod.103.024729] [PMID: 14973260]
[77]
Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175(1): 61-8.
[http://dx.doi.org/10.4049/jimmunol.175.1.61] [PMID: 15972632]
[78]
Santoni A, Carlino C, Gismondi A. Uterine NK cell development, migration and function. Reprod Biomed Online 2008; 16(2): 202-10.
[http://dx.doi.org/10.1016/S1472-6483(10)60575-5] [PMID: 18284874]
[79]
Nath PR, Gangaplara A, Pal-Nath D, et al. CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus. Front Immunol 2018; 9: 2985.
[http://dx.doi.org/10.3389/fimmu.2018.02985] [PMID: 30643501]
[80]
Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 2001; 11(3): 130-5.
[http://dx.doi.org/10.1016/S0962-8924(00)01906-1] [PMID: 11306274]
[81]
Sick E, Jeanne A, Schneider C, Dedieu S, Takeda K, Martiny L. CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br J Pharmacol 2012; 167(7): 1415-30.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02099.x] [PMID: 22774848]
[82]
Newham P, Craig SE, Seddon GN, et al. Alpha4 integrin binding interfaces on VCAM-1 and MAdCAM-1. Integrin binding footprints identify accessory binding sites that play a role in integrin specificity. J Biol Chem 1997; 272(31): 19429-40.
[http://dx.doi.org/10.1074/jbc.272.31.19429] [PMID: 9235944]
[83]
Li XL, Liu L, Li DD, et al. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Sci Rep 2017; 7: 40464.
[http://dx.doi.org/10.1038/srep40464] [PMID: 28084395]
[84]
Ramos TN, Bullard DC, Barnum SR. ICAM-1: isoforms and phenotypes. J Immunol 2014; 192(10): 4469-74.
[http://dx.doi.org/10.4049/jimmunol.1400135] [PMID: 24795464]
[85]
Smadja DM, Guerin CL, Boscolo E, Bieche I, Mulliken JB, Bischoff J. α6-Integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells 2014; 32(3): 684-93.
[http://dx.doi.org/10.1002/stem.1539] [PMID: 24022922]
[86]
Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel) 2013; 5(1): 27-47.
[http://dx.doi.org/10.3390/cancers5010027] [PMID: 24216697]
[87]
Goldstein I, Ben-Horin S, Li J, Bank I, Jiang H, Chess L. Expression of the alpha1beta1 integrin, VLA-1, marks a distinct subset of human CD4+ memory T cells. J Clin Invest 2003; 112(9): 1444-54.
[http://dx.doi.org/10.1172/JCI200319607] [PMID: 14597770]
[88]
Nagata S. Apoptosis by death factor. Cell 1997; 88(3): 355-65.
[http://dx.doi.org/10.1016/S0092-8674(00)81874-7] [PMID: 9039262]
[89]
Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 2007; 27(12): 2514-23.
[http://dx.doi.org/10.1161/ATVBAHA.107.151456] [PMID: 17872453]
[90]
Coleman PJ, Duong LT. Ligands to the integrin receptor alpha(v)beta(3) Expert opinion on therapeutic patents 12(7): 1009-21. 2002
[91]
Lowell CA, Mayadas TN. Overview: studying integrins in vivo. Methods Mol Biol 2012; 757: 369-97.
[http://dx.doi.org/10.1007/978-1-61779-166-6_22] [PMID: 21909923]
[92]
Breuss JM, Gallo J, DeLisser HM, et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci 1995; 108(Pt 6): 2241-51.
[PMID: 7673344]
[93]
Izaguirre MF, Casco VH. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence. Cell Commun Signal 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12964-016-0150-1] [PMID: 27814736]
[94]
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem 2000; 275(29): 21785-8.
[http://dx.doi.org/10.1074/jbc.R000003200] [PMID: 10801897]
[95]
Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P. Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci USA 1997; 94(12): 6273-8.
[http://dx.doi.org/10.1073/pnas.94.12.6273] [PMID: 9177207]
[96]
Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100(6): 1935-47.
[http://dx.doi.org/10.1182/blood-2002-02-0350] [PMID: 12200350]
[97]
Rajagopalan S, Long EO. KIR2DL4 (CD158d): An activation receptor for HLA-G. Front Immunol 2012; 3: 258.
[http://dx.doi.org/10.3389/fimmu.2012.00258] [PMID: 22934097]
[98]
Tau G, Rothman P. Biologic functions of the IFN-gamma receptors. Allergy 1999; 54(12): 1233-51.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00099.x] [PMID: 10688427]
[99]
Werfel T, Witter W, Götze O. CD11b and CD11c antigens are rapidly increased on human natural killer cells upon activation. J Immunol 1991; 147(7): 2423-7.
[PMID: 1680915]
[100]
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adhes Migr 2012; 6(2): 71-7.
[http://dx.doi.org/10.4161/cam.20077] [PMID: 22568952]
[101]
Pacheco KA, Tarkowski M, Klemm J, Rosenwasser LJ. CD49d expression and function on allergen-stimulated T cells from blood and airway. Am J Respir Cell Mol Biol 1998; 18(2): 286-93.
[http://dx.doi.org/10.1165/ajrcmb.18.2.2687] [PMID: 9476917]
[102]
Fletcher JM, Prentice HG, Grundy JE. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J Immunol 1998; 161(5): 2365-74.
[PMID: 9725232]
[103]
Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Molecular patholog (4): 189-96.1999 52: pp.
[http://dx.doi.org/ 10.1136/mp.52.4.189]
[104]
Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG. Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab 2014; 34(9): 1425-9.
[http://dx.doi.org/10.1038/jcbfm.2014.120] [PMID: 24984897]
[105]
Walenkamp AME, Lapa C, Herrmann K, Wester HJ. The next big hit? Journal of nuclear medicine. Soc Nucl Med 2017; 58: 77-82.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy