Review Article

高血压治疗的计算和药物基因组学见解:合理的药物设计和优化策略

卷 21, 期 1, 2020

页: [18 - 33] 页: 16

弟呕挨: 10.2174/1389450120666190808101356

价格: $65

摘要

背景:高血压是由遗传和非遗传因素引起的普遍的心血管并发症。血压(BP)的管理很困难,因为大多数患者在治疗开始后不久就对单一疗法产生抵抗力。尽管有许多降压药可用,但一些患者对多种药物无反应。确定个性化的降压治疗方法是改善血压管理的关键。 目的:本综述旨在阐明合理药物设计和其他方法的方面,以开发更好的高血压治疗方法。 结果:在高血压相关的信号传导机制中,肾素-血管紧张素-醛固酮系统是高血压治疗的主要遗传靶标。识别作用于多个靶标的单一药物是高血压治疗的新兴策略,可以通过发现突变少且保守性高的区域的新药物靶标来实现。将药物基因组学研究扩展至包括接受多种降压药治疗的高血压患者,可能有助于鉴定高血压的遗传标志。但是,有关药物基因组学在高血压中作用的可用证据有限,并且主要集中在候选基因上。高血压药物基因组学的研究旨在确定对降压药反应差异的遗传原因。遗传关联研究确定了影响药物反应的单核苷酸多态性。为了了解遗传特性如何改变药物反应,可以利用诱变的计算筛选来观察蛋白质水平上药物反应的变化,这可以帮助识别新的抑制剂和治疗高血压的药物靶标。 结论:合理的药物设计有助于发现和设计有效的抑制剂。然而,在将新型抑制剂临床用于抗高血压治疗之前,需要进一步的研究和临床验证。

关键词: 计算诱变,药物发现,高血压,血压,药物基因组学,SNPs,RAAS。

图形摘要

[1]
WHO. Global Health Observatory (GHO) data [homepage on the Internet]. World Heal Organ.. https://www.who.int/gho/ncd/en/ (Accessed November 04, 2018)
[2]
Benjamin EJ, Virani SS, Callaway CW, et al. American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[3]
Arwood MJ, Cavallari LH, Duarte JD. Pharmacogenomics of hypertension and heart disease. Curr Hypertens Rep 2015; 17(9): 586.
[http://dx.doi.org/10.1007/s11906-015-0586-5] [PMID: 26272307]
[4]
Williams B, Cockcroft JR, Kario K, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension: The parameter study. Hypertension 2017; 69(3): 411-20.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08556] [PMID: 28093466]
[5]
Toto RD. Treatment of hypertension in chronic kidney disease. Semin Nephrol 2005; 25(6): 435-9.
[http://dx.doi.org/10.1016/j.semnephrol.2005.05.016] [PMID: 16298269]
[6]
Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev 2011; 5(9): 30-40.
[http://dx.doi.org/10.4103/0973-7847.79097] [PMID: 22096316]
[7]
Vm M, Kak L, Pm F, Bassett K, Jm W. Blood pressure lowering efficacy of renin inhibitors for primary hypertension ( Review ) Summary of Findings for the Main Comparison Cochrane Database Syst Rev 2017. (4)
[8]
Shrout T, Rudy DW, Piascik MT. Hypertension update, JNC8 and beyond current opinion in pharmacology. Elsevier Ltd 2017; pp. 41-6.
[9]
Rose R, Balakrishnan A, Muthusamy K, Arumugam P, Shanmugam S, Gopalswamy J. Myocilin mutations among POAG patients from two populations of Tamil Nadu, South India, a comparative analysis. Mol Vis 2011; 17(December): 3243-53.
[PMID: 22194650]
[10]
Gupta R. Trends in Hypertension Epidemiology in India 2004; 73-8.
[11]
Cover Story _ The 2017 High Blood Pressure Guideline_ Risk Reduction Through Better Management - American College of Cardiology American College of Cardiology 2017.
[12]
Kario K, Tomitani N, Buranakitjaroen P, et al. HOPE Asia Network. Rationale and design for the Asia BP@Home study on home blood pressure control status in 12 Asian countries and regions. J Clin Hypertens (Greenwich) 2018; 20(1): 33-8.
[http://dx.doi.org/10.1111/jch.13145] [PMID: 29265725]
[13]
Dymond JN, Rarities C. Bird Report. 1972.Systematic List 1976. Vol. 39
[14]
Kim TJ, Lee JW, Kang HT, et al. Trends in Blood Pressure and Prevalence of Hypertension in Korean Adults Based on the 1998-2014 KNHANES. Yonsei Med J 2018; 59(3): 356-65.
[http://dx.doi.org/10.3349/ymj.2018.59.3.356] [PMID: 29611397]
[15]
Ohno Y, Sone M, Inagaki N, et al. Nagahama study JPAS study group. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: A multicenter study in japan. Hypertension 2018; 71(3): 530-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10263] [PMID: 29358460]
[16]
Franklin SS. Hypertension in older people: part 2. J Clin Hypertens (Greenwich) 2006; 8(7): 521-5.
[http://dx.doi.org/10.1111/j.1524-6175.2006.05116.x] [PMID: 16849907]
[17]
Staessen JA, Byttebier G, Buntinx F, Celis H, O’Brien ET, Fagard R. Ambulatory blood pressure monitoring and treatment of hypertension investigators. Antihypertensive treatment based on conventional or ambulatory blood pressure measurement. A randomized controlled trial. JAMA 1997; 278(13): 1065-72.
[http://dx.doi.org/10.1001/jama.1997.03550130039034] [PMID: 9315764]
[18]
Baker MD, Bell LMAJ. The new england journal of medicine downloaded from Nejm.Org at GEORGE WASHINGTON UNIVERSITY on March 4, 2012. For personal use only. No other uses without permission. Copyright © 1993 Massachusetts medical society. All Rights Reserved. N Engl J Med 1993; 329(20): 1437-41.
[http://dx.doi.org/10.1056/NEJM199311113292001] [PMID: 8413453]
[19]
Lupoli S, Salvi E, Barcella M, Barlassina C. Pharmacogenomics considerations in the control of hypertension. Pharmacogenomics 2015; 16(17): 1951-64.
[http://dx.doi.org/10.2217/pgs.15.131] [PMID: 26555875]
[20]
Fox LS, Schooley WR, Nichols RL, Webb WR. Open cardiac operations in patients with abnormalities of white blood cell number or function. South Med J 1988; 81(8): 1065-6.
[http://dx.doi.org/10.1097/00007611-198808000-00033] [PMID: 2970115]
[21]
Wassertheil-Smoller S, Fann C, Allman RM, et al. The SHEP Cooperative Research Group. Relation of low body mass to death and stroke in the systolic hypertension in the elderly program. Arch Intern Med 2000; 160(4): 494-500.
[http://dx.doi.org/10.1001/archinte.160.4.494] [PMID: 10695689]
[22]
Alderman MH, Cohen HW, Sealey JE, Laragh JH. Plasma renin activity levels in hypertensive persons: their wide range and lack of suppression in diabetic and in most elderly patients. Am J Hypertens 2004; 17(1): 1-7.
[http://dx.doi.org/10.1016/j.amjhyper.2003.08.015] [PMID: 14700504]
[23]
Banic A, Benkovic V, Knezevic A. Effectiveness of hypertension therapy by using fixed combinations and monocomponent drugs - A prospective study from croatia. J Pharm Pharmacol 2018; 6: 333-9.
[24]
Mehanna M, Gong Y, McDonough CW, et al. Blood pressure response to metoprolol and chlorthalidone in European and African Americans with hypertension. J Clin Hypertens (Greenwich) 2017; 19(12): 1301-8.
[http://dx.doi.org/10.1111/jch.13094] [PMID: 28940643]
[25]
Gong Y, Wang Z, Beitelshees AL, et al. Pharmacogenomic genome-wide meta-analysis of blood pressure response to β-blockers in hypertensive african americans. Hypertension 2016; 67(3): 556-63.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06345] [PMID: 26729753]
[26]
Baker JH. Meditation for Reducing CVD Risk. Integrative Medicine Alert 2018; pp. 57-60.
[27]
Kaufman AL, Spitz J, Jacobs M, et al. Evidence for clinical implementation of pharmacogenomics in cardiac drugs. Mayo Clin Proc 2015; 90(6): 716-29.
[http://dx.doi.org/10.1016/j.mayocp.2015.03.016] [PMID: 26046407]
[28]
Feldman RD, Hussain Y, Kuyper LM, McAlister FA, Padwal RS, Tobe SW. Intraclass differences among antihypertensive drugs. Annu Rev Pharmacol Toxicol 2015; 55(1): 333-52.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124446] [PMID: 25251994]
[29]
Guasti L, Gaudio G, Lupi A, et al. Ambulatory blood pressure parameters after canrenone addition to existing treatment regimens with maximum tolerated dose of angiotensin-converting enzyme inhibitors/angiotensin II type 1 receptor blockers plus hydrochlorothiazide in uncontrolled hypertensive patients. Drug Des Devel Ther 2017; 11: 2293-300.
[http://dx.doi.org/10.2147/DDDT.S134826] [PMID: 28831241]
[30]
Menni C. Blood pressure pharmacogenomics: gazing into a misty crystal ball. J Hypertens 2015; 33(6): 1142-3.
[http://dx.doi.org/10.1097/HJH.0000000000000574] [PMID: 25923729]
[31]
Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 2016; 12(2): 110-22.
[http://dx.doi.org/10.1038/nrneph.2015.176] [PMID: 26592190]
[32]
Barton Laws M, Beach M C, Lee Y, et al. The pharmacogenomics research network translational pharmacogenetics program: Overcoming challenges of real- world implementation NIH public access 2013; 17(1): 148-59.
[33]
Singh KD, Jajodia A, Kaur H, Kukreti R, Karthikeyan M. Renin angiotensin system gene polymorphisms in response to antihypertensive drugs and visit-to-visit blood pressure variability in essential hypertensive patients. Curr Pharmacogenomics Person Med 2015; 12(4): 227-35.
[http://dx.doi.org/10.2174/1875692113666150420225829]
[34]
Wang J, Shi X, Ma C, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens 2017; 35(1): 10-7.
[http://dx.doi.org/10.1097/HJH.0000000000001159] [PMID: 27906836]
[35]
Wu C, Shlipak MG, Stawski RS, et al. Health ABC study. Visit-to-visit blood pressure variability and mortality and cardiovascular outcomes among older adults: The health, aging, and body composition study. Am J Hypertens 2017; 30(2): 151-8.
[http://dx.doi.org/10.1093/ajh/hpw106] [PMID: 27600581]
[36]
Dumitrescu L, Ritchie MD, Denny JC, et al. Genome-wide study of resistant hypertension identified from electronic health records. PLoS One 2017; 12(2)e0171745
[http://dx.doi.org/10.1371/journal.pone.0171745] [PMID: 28222112]
[37]
Chern TH, Chiang FT. Molecular genetic study of hypertension. Acta Cardiol Sin 2004; 20(3): 129-38.
[38]
Hackenthal E, Paul M, Ganten D, Taugner R. Morphology, physiology and molecular biology of renin secretion. Physiol Rev 1990; 70(4): 1067-116.
[39]
Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med 2008; 264(3): 224-36.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01981.x] [PMID: 18793332]
[40]
Lee WK, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental models to clinical applications. J Hum Hypertens 2000; 14(10-11): 631-47.
[http://dx.doi.org/10.1038/sj.jhh.1001043] [PMID: 11095156]
[41]
Gautam N, Kaur S, Kaur S, Kumar S. Computational Study of ACE and AGT Gene of RAAS Pathway. World News Nat Sci 2018; 19(June): 65-77.
[42]
Alanazi AM, Abdelhameed AS, Bakheit AH, et al. Spectroscopic and Molecular Docking Studies of the Binding of the Angiotensin II Receptor Blockers (ARBs) Azilsartan, Eprosartan and Olmesartan to Bovine Serum Albumin. J Lumin 2018; 203: 616-28.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.085]
[43]
Karthikeyan M, Rose R, Shridevi V, et al. Core promoter variants (A-20C, T-18C and G-6A) of the angiotensinogen (AGT) gene are not significantly associated with hypertension in patients of tamilnadu, India. Int J Hum Genet 2009; 9(1): 13-9.
[http://dx.doi.org/10.1080/09723757.2009.11886056]
[44]
Rae KM, Grimson S, Pringle KG. Personalised medicine: A new approach to improving health in indigenous australian populations. Public Health Genomics 2017; 20(1): 58-62.
[http://dx.doi.org/10.1159/000455005] [PMID: 28056457]
[45]
Zhang H, Jin L, Mu T, et al. Associations of CYP4A11 gene-gene and gene-smoking interactions with essential hypertension in the male eastern Chinese Han population. Clin Exp Hypertens 2017; 39(5): 448-53.
[http://dx.doi.org/10.1080/10641963.2016.1267201] [PMID: 28534704]
[46]
Sanoski CA. Aliskiren: an oral direct renin inhibitor for the treatment of hypertension. Pharmacotherapy 2009; 29(2): 193-212.
[http://dx.doi.org/10.1592/phco.29.2.193] [PMID: 19170589]
[47]
Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998; 83(12): 1182-91.
[http://dx.doi.org/10.1161/01.RES.83.12.1182] [PMID: 9851935]
[48]
Zisaki A, Miskovic L, Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des 2015; 21(6): 806-22.
[http://dx.doi.org/10.2174/1381612820666141024151119] [PMID: 25341854]
[49]
Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and Cooperativity in GPCRs from the Perspective of the Angiotensin AT1 and Dopamine D2 Receptors. Neurosci Lett 2018.
[PMID: 29684528]
[50]
Feldman RD, Gros R. Impaired vasodilator function in hypertension: the role of alterations in receptor-G protein coupling. Trends Cardiovasc Med 1998; 8(7): 297-305.
[http://dx.doi.org/10.1016/S1050-1738(98)00022-X] [PMID: 14987554]
[51]
Brinks HL, Eckhart AD. Regulation of GPCR Signaling in Hypertension. Biochim Biophys Acta 2015; 6(9): 790-5.
[PMID: 20060896]
[52]
Majzunova M, Dovinova I, Barancik M, Chan JYH. Redox signaling in pathophysiology of hypertension. J Biomed Sci 2013; 20(69): 69.
[http://dx.doi.org/10.1186/1423-0127-20-69] [PMID: 24047403]
[53]
Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res 2006; 71(2): 247-58.
[http://dx.doi.org/10.1016/j.cardiores.2006.05.001] [PMID: 16765337]
[54]
Giorgini P, Sahebkar A, Stamerra CA, et al. Comparison of clinical outcomes between genders following antihypertensive therapy: A meta-analysis. Curr Med Chem 2017; 24(24): 2639-49.
[http://dx.doi.org/10.2174/0929867323666161213160440] [PMID: 27978800]
[55]
Divac N, Naumović R, Stojanović R, Prostran M. The role of immunosuppressive medications in the pathogenesis of hypertension and efficacy and safety of antihypertensive agents in kidney transplant recipients. Curr Med Chem 2016; 23(19): 1941-52.
[http://dx.doi.org/10.2174/0929867323666151221150052] [PMID: 26687832]
[56]
Cruz; J. N.; Oliveira, M. S.; Vogado, J. H.; Silva, S. G.; Costa, W. A.; Fernanda, WF Bezerra; Renato, A. C.; Junior, R. N.; Neto, A. M. Molecular insights on the interactions of nitrosamines from cigarette smoking with CYP2A13 using molecular docking and molecular dynamics simulation HSOA J Pulm Med. Respir Res 2018; (August): 4.
[57]
Wen H, Wang L. Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients. Medicine (United States) 2017 March;; 96(11)
[http://dx.doi.org/10.1097/MD.0000000000006150]
[58]
Turnbull F, Neal B, Algert C, et al. Blood pressure lowering treatment trialists’ collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003; 362(9395): 1527-35.
[http://dx.doi.org/10.1016/S0140-6736(03)14739-3] [PMID: 14615107]
[59]
Cushman WC, Ford CE, Cutler JA, et al. ALLHAT Collaborative Research Group. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich) 2002; 4(6): 393-404.
[http://dx.doi.org/10.1111/j.1524-6175.2002.02045.x] [PMID: 12461301]
[60]
Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 2003; 326(7404): 1427-0.
[http://dx.doi.org/10.1136/bmj.326.7404.1427] [PMID: 12829555]
[61]
Davison KK, Birch LL. Oral direct renin inhibition: Premise, promise, and potential limitations of a new class of antihypertensive drug. Am J Med 2008; 64(12): 2391-404.
[62]
Pool JL. Direct renin inhibition: focus on aliskiren. J Manag Care Pharm 2007; 13(8)(Suppl. B): 21-33.
[http://dx.doi.org/10.18553/jmcp.2007.13.s8-b.21] [PMID: 17970614]
[63]
Pich J. The efficacy of renin inhibitors in primary hypertension. Am J Nurs 2018; 118(4): 56.
[http://dx.doi.org/10.1097/01.NAJ.0000532077.64748.d2] [PMID: 29596257]
[64]
Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A. Direct renin inhibition with aliskiren improves ischemia-induced neovascularization: blood pressure-independent effect. Atherosclerosis 2015; 242(2): 450-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.009] [PMID: 26295797]
[65]
Hsu CN, Lee CT, Huang LT, Tain YL. Aliskiren in early postnatal life prevents hypertension and reduces asymmetric dimethylarginine in offspring exposed to maternal caloric restriction. J Renin Angiotensin Aldosterone Syst 2015; 16(3): 506-13.
[http://dx.doi.org/10.1177/1470320313514123] [PMID: 24833625]
[66]
Buczko W, Hermanowicz JM. Pharmacokinetics and pharmacodynamics of aliskiren, an oral direct renin inhibitor. Pharmacol Rep 2008; 60(5): 623-31.
[PMID: 19066408]
[67]
Jm W, Vm M, Gill R. First-line drugs for hypertension (Review). Summary of findings for the main comparison 2018.
[68]
Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004; 43(1): 4-9.
[http://dx.doi.org/10.1161/01.HYP.0000103632.19915.0E] [PMID: 14638621]
[69]
Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48(2): 219-24.
[http://dx.doi.org/10.1161/01.HYP.0000231552.10054.aa] [PMID: 16801488]
[70]
Hoogwerf BJ, Young JB. The HOPE study. Ramipril lowered cardiovascular risk, but vitamin E did not. Cleve Clin J Med 2000; 67(4): 287-93.
[http://dx.doi.org/10.3949/ccjm.67.4.287] [PMID: 10780101]
[71]
Fein A. ACE inhibitors worsen inflammatory pain. Med Hypotheses 2009; 72(6): 757.
[http://dx.doi.org/10.1016/j.mehy.2009.01.012] [PMID: 19231090]
[72]
Ram CVS. Beta-blockers in hypertension. Am J Cardiol 2010; 106(12): 1819-25.
[http://dx.doi.org/10.1016/j.amjcard.2010.08.023] [PMID: 21126627]
[73]
Quinn U. Renin genotype as a predictor of response to antihypertensive therapy : A personalized approach to management of high blood pressure R Coll Surg Irel 2017.
[74]
Rochlani Y, Khan MH, Banach M, Aronow WS. Are two drugs better than one? A review of combination therapies for hypertension. Expert Opin Pharmacother 2017; 18(4): 377-86.
[http://dx.doi.org/10.1080/14656566.2017.1288719] [PMID: 28129695]
[75]
Dhanachandra Singh Kh. Jajodia A, Kaur H, Kukreti R, Karthikeyan M. Gender specific association of RAS gene polymorphism with essential hypertension: a case-control study. BioMed Res Int 2014; •••2014538053
[http://dx.doi.org/10.1155/2014/538053] [PMID: 24860821]
[76]
Strauss MH, Hall AS. Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the ARB-MI paradox. Circulation 2006; 114(8): 838-54.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.594986] [PMID: 16923768]
[77]
Weir MR, Bush C, Anderson DR, Zhang J, Keefe D, Satlin A. Antihypertensive efficacy, safety, and tolerability of the oral direct renin inhibitor aliskiren in patients with hypertension: a pooled analysis. J Am Soc Hypertens 2007; 1(4): 264-77.
[http://dx.doi.org/10.1016/j.jash.2007.04.004] [PMID: 20409858]
[78]
Musini VM, Tejani AM, Bassett K, Wright JM. Pharmacotherapy for Hypertension in the Elderly. Cochrane Database Syst Rev 2009.
[http://dx.doi.org/10.1002/14651858.CD000028.pub2]
[79]
Food and drug administration (FDA). Hypertension: developing fixed- dose combination drugs for treatment guidance for industry Center for Drug Evaluation Research. CDER 2018.
[80]
Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 2001; 41(3): 856-64.
[http://dx.doi.org/10.1021/ci000403i] [PMID: 11410068]
[81]
Myers S, Baker A. Drug discovery--an operating model for a new era. Nat Biotechnol 2001; 19(8): 727-30.
[http://dx.doi.org/10.1038/90765] [PMID: 11479559]
[82]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[83]
McAlister FA, Straus S, Sackett D. Randomized clinical trials of antihypertensive drugs: all that glitters is not gold. CMAJ 1998; 159(5): 488-90.
[PMID: 9757173]
[84]
Chakraborty BS. Clinical trials of antihypertensives: Nature of control and design. Indian J Pharmacol 2011; 43(1): 13-7.
[http://dx.doi.org/10.4103/0253-7613.75659] [PMID: 21455414]
[85]
Karaman B, Sippl W. Computational Drug Repurposing: Current Trends. Curr Med Chem 2018; 25.
[PMID: 29848268]
[86]
Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 2016; 14: 177-84.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[87]
Blundell TL. Structure-based drug design. Nature 1996; 384(6604)(Suppl.): 23-6.
[PMID: 8895597]
[88]
Yousefpour A, Modarress H, Goharpey F, Amjad-Iranagh S. Interaction of PEGylated anti-hypertensive drugs, amlodipine, atenolol and lisinopril with lipid bilayer membrane: A molecular dynamics simulation study. Biochim Biophys Acta 2015; 1848(8): 1687-98.
[http://dx.doi.org/10.1016/j.bbamem.2015.04.016] [PMID: 25960186]
[89]
Wang Z, Cheng LP, Zhang XH, Pang W, Li L, Zhao JL. Design, synthesis and biological evaluation of novel oseltamivir derivatives as potent neuraminidase inhibitors. Bioorg Med Chem Lett 2017; 27(24): 5429-35.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.003] [PMID: 29141777]
[90]
Loganathan L, Muthusamy K. Investigation of Drug Interaction Potentials and Binding Modes on Direct Renin Inhibitors. A Computational Modeling Studies. Lett Drug Des Discov 2018; 15.
[http://dx.doi.org/10.2174/1570180815666180827113622]
[91]
García-Mora P, Martín-Martínez M, Angeles Bonache M, et al. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem 2017; 221: 464-72.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.087] [PMID: 27979228]
[92]
Arya H, Syed SB, Singh SS, Ampasala DR, Coumar MS. In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5. Interdiscip Sci 2018; 10(4): 792-804.
[http://dx.doi.org/10.1007/s12539-017-0243-6] [PMID: 28623462]
[93]
Kecel-Gündüz S, Budama-Kilinc Y, Cakir Koc R, et al. Computational design of Phe-tyr dipeptide and preparation, characterization, cytotoxicity studies of Phe-tyr dipeptide loaded PLGA nanoparticles for the treatment of hypertension. J Biomol Struct Dyn 2017; 1102(August): 1-15.
[PMID: 28835169]
[94]
Deng Z, Liu Y, Wang J, et al. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive rats (SHRs). Mar Drugs 2018; 16(9)E299
[http://dx.doi.org/10.3390/md16090299] [PMID: 30150552]
[95]
Triputra MA, Yanuar A. Analysis of compounds isolated from gnetum gnemon L. Seeds as potential ACE inhibitors through molecular docking and molecular dynamics simulations. J Young Pharm 2018; 10(2s): S32-9.
[http://dx.doi.org/10.5530/jyp.2018.2s.7]
[96]
Walsh CG, Johnson KB. Observational cohort studies and the challenges of in silico experiments. JAMA Oncol 2017; 3(1): 55-7.
[http://dx.doi.org/10.1001/jamaoncol.2016.3478] [PMID: 27737433]
[97]
Singh KD, Muthusamy K. Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT(1) and ET(A) receptor antagonists. Acta Pharmacol Sin 2013; 34(12): 1592-606.
[http://dx.doi.org/10.1038/aps.2013.129] [PMID: 24304920]
[98]
Zheng M, Zhao J, Cui C, et al. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med Res Rev 2018; 38(3): 914-50.
[http://dx.doi.org/10.1002/med.21483] [PMID: 29323726]
[99]
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46(3): 310-5.
[http://dx.doi.org/10.1038/ng.2892] [PMID: 24487276]
[100]
Karahalil B. Overview of Systems Biology and Omics Technologies. Curr Med Chem 2016; 23(37): 4221-30.
[http://dx.doi.org/10.2174/0929867323666160926150617] [PMID: 27686657]
[101]
Lek M, Karczewski KJ, Minikel EV, et al. Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536(7616): 285-91.
[http://dx.doi.org/10.1038/nature19057] [PMID: 27535533]
[102]
Singh KhD, Karthikeyan M. Combined sequence and sequence-structure-based methods for analyzing RAAS gene SNPs: a computational approach. J Recept Signal Transduct Res 2014; 34(6): 513-26.
[http://dx.doi.org/10.3109/10799893.2014.922575] [PMID: 24878201]
[103]
Nagamani S, Singh KhD, Muthusamy K. Combined sequence and sequence-structure based methods for analyzing FGF23, CYP24A1 and VDR genes. Meta Gene 2016; 9: 26-36.
[http://dx.doi.org/10.1016/j.mgene.2016.03.005] [PMID: 27114920]
[104]
Wang Z, Moult J. SNPs, protein structure, and disease. Hum Mutat 2001; 17(4): 263-70.
[http://dx.doi.org/10.1002/humu.22] [PMID: 11295823]
[105]
Miller MP, Kumar S. Understanding human disease mutations through the use of interspecific genetic variation. Hum Mol Genet 2001; 10(21): 2319-28.
[http://dx.doi.org/10.1093/hmg/10.21.2319] [PMID: 11689479]
[106]
Sunil K, Giovanna A, Philipp B. SNP2TFBS-a database of regulatory SNPs affecting predicted transcription factor binding site affinity. Nucleic Acids Res 2017; 45(D1): 139-44.
[http://dx.doi.org/10.1093/nar/gkw1064]
[107]
Xiong P, Zhang C, Zheng W, Zhang Y. BindProfX: Assessing mutation-induced binding affinity change by protein interface profiles with pseudo-counts. J Mol Biol 2017; 429(3): 426-34.
[http://dx.doi.org/10.1016/j.jmb.2016.11.022] [PMID: 27899282]
[108]
Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montaño B, Blundell TL, Ascher DB. Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol 2017; 128: 3-13.
[http://dx.doi.org/10.1016/j.pbiomolbio.2016.10.002] [PMID: 27913149]
[109]
Patriotis C, Maruvada P, Srivastava S. Molecular Detection and Diagnosis of Cancer. Mol. Basis Hum. Cancer 2016; pp. 797-809.
[110]
Acharya KR, Sturrock ED, Riordan JF, Ehlers MRW. Ace revisited: a new target for structure-based drug design. Nat Rev Drug Discov 2003; 2(11): 891-902.
[http://dx.doi.org/10.1038/nrd1227] [PMID: 14668810]
[111]
Patchett AA, Harris E, Tristram EW, et al. A new class of angiotensin-converting enzyme inhibitors. Nature 1980; 288(5788): 280-3.
[http://dx.doi.org/10.1038/288280a0] [PMID: 6253826]
[112]
von Itzstein M, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993; 363(6428): 418-23.
[http://dx.doi.org/10.1038/363418a0] [PMID: 8502295]
[113]
Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983; 303(5912): 41-4.
[http://dx.doi.org/10.1038/303041a0] [PMID: 6188957]
[114]
Lu X, Yang H, Chen Y, et al. The development of pharmacophore modeling: Generation and recent applications in drug discovery. Curr Pharm Des 2018; 24(29): 3424-39.
[http://dx.doi.org/10.2174/1381612824666180810162944] [PMID: 30101699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy