Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Molecular Modeling Studies of Anti-Alzheimer Agents by QSAR, Molecular Docking and Molecular Dynamics Simulations Techniques

Author(s): Rahman Abdizadeh, Farzin Hadizadeh and Tooba Abdizadeh*

Volume 16, Issue 7, 2020

Page: [903 - 927] Pages: 25

DOI: 10.2174/1573406415666190806155619

Price: $65

Abstract

Background: Acetylcholinesterase (AChE), a serine hydrolase, is an important drug target in the treatment of Alzheimer's disease (AD). Thus, novel AChE inhibitors were designed and developed as potential drug candidates, for significant therapy of AD.

Objective: In this work, molecular modeling studies, including CoMFA, CoMFA-RF, CoMSIA, HQSAR and molecular docking and molecular dynamics simulations were performed on a series of AChE inhibitors to get more potent anti-Alzheimer drugs.

Methods: 2D/3D-QSAR models including CoMFA, CoMFA-RF, CoMSIA, and HQSAR methods were carried out on 40 pyrimidinylthiourea derivatives as data set by the Sybylx1.2 program. Molecular docking and molecular dynamics simulations were performed using the MOE software and the Sybyl program, respectively. Partial least squares (PLS) model as descriptors was used for QSAR model generation.

Results: The CoMFA (q2, 0.629; r2ncv, 0.901; r2pred, 0.773), CoMFA-RF (q2, 0.775; r2ncv, 0.910; r2pred, 0.824), CoMSIA (q2, 0.754; r2ncv, 0.919; r2pred, 0.874) and HQSAR models (q2, 0.823; r2ncv, 0.976; r2pred, 0.854) for training and test set yielded significant statistical results.

Conclusion: These QSAR models were excellent, robust and had good predictive capability. Contour maps obtained from the QSAR models were validated by molecular dynamics simulationassisted molecular docking study. The resulted QSAR models could be useful for the rational design of novel potent AChE inhibitors in Alzheimer's treatment.

Keywords: Alzheimer's disease, CoMFA, CoMSIA, HQSAR, pyrimidinylthiourea derivatives, molecular docking.

Graphical Abstract

[1]
Bukhari, S.N.A.; Jantan, I.; Masand, V.H.; Mahajan, D.T.; Sher, M.; Naeem-ul-Hassan, M.; Amjad, M.W. Novel series of 1,2,4-trioxane derivatives as antimalarial agents. J. Enzyme Inhib. Med. Chem., 2014.32(1), 1159-1173..
[2]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. 2014.
[3]
Vitorović-Todorović, M.D.; Cvijetić, I.N.; Juranić, I.O.; Drakulić, B.J. 2012.
[4]
Dighe, S.N.; Deora, G.S.; De la Mora, E.; Nachon, F.; Chan, S.; Parat, M.O.; Brazzolotto, X.; Ross, B.P.; Ross, B.P. 2016.
[5]
Tam, C.; Wong, J.H.; Ng, T.B.; Tsui, S.K.W.; Zuo, T. Drugs for targeted therapies of Alzheimer’s disease., 2018.
[6]
Puiatti, M.; Borioni, J.L.; Vallejo, M.G.; Cabrera, J.L.; Agnese, A.M.; Ortega, M.G.; Pierini, A.B. 2013.
[7]
Mount, C.; Downton, C. Alzheimer disease: progress or profit?, 2006.
[8]
Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C. 2019.
[9]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y-C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. 1986.
[10]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease., 2009.
[11]
Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease., 2001.
[12]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[13]
Birks, J.; Iakovidou, V.; Tsolaki, M.; Tsolaki, M. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2000, CD001191(4)11034705
[14]
Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22(6), 273-280.
[15]
Raevsky, O.A.; Mukhametov, A.; Grigorev, V.Y.; Ustyugov, A.; Tsay, S.C.; Jih-Ru Hwu, R.; Yarla, N.S.; Tarasov, V.V.; Aliev, G.; Bachurin, S.O. Applications of multi-target computer-aided methodologies in molecular design of CNS drugs., 2018.
[16]
Vitorović-Todorović, M.D.; Juranić, I.O.; Mandić, L.M.; Drakulić, B.J. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities Int. J. Biol. Macromol., 2010.121, 77-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.153] [PMID: 30261256]
[17]
Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s disease: current status and new perspectives., 2003.
[18]
Cheng, Z.Q.; Zhu, K.K.; Zhang, J.; Song, J.L.; Muehlmann, L.A.; Jiang, C.S.; Liu, C.L.; Zhang, H. 2019.
[19]
Korabecny, J.; Dolezal, R.; Cabelova, P.; Horova, A.; Hruba, E.; Ricny, J.; Sedlacek, L.; Nepovimova, E.; Spilovska, K.; Andrs, M.; Musilek, K.; Opletalova, V.; Sepsova, V.; Ripova, D.; Kuca, K. 2014.
[20]
Sun, X.; Jin, L.; Ling, P. Review of drugs for Alzheimer’s disease., 2012.
[21]
Racchi, M.; Mazzucchelli, M.; Porrello, E.; Lanni, C.; Govoni, S. Acetylcholinesterase inhibitors: novel activities of old molecules., 2004.
[22]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease., 2013.
[23]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein., 1991.
[24]
Muñoz-Ruiz, P.; Rubio, L.; García-Palomero, E.; Dorronsoro, I.; del Monte-Millán, M.; Valenzuela, R.; Usán, P.; de Austria, C.; Bartolini, M.; Andrisano, V.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Medina, M.; Martínez, A. 2005.
[25]
Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. 2009.
[26]
Leonetti, F.; Catto, M.; Nicolotti, O.; Pisani, L.; Cappa, A.; Stefanachi, A.; Carotti, A.; Carotti, A. 2008.
[27]
Kubinyi, H. 1997.
[28]
Kubinyi, H. 1997.
[29]
Zheng, X.; He, M.; Tan, X.; Zheng, J.; Wang, F.; Liu, S. 2017.
[30]
Fang, C.; Xiao, Z. 2016.
[31]
Akamatsu, M. 2002.
[32]
Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 2017.
[33]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 2010.
[34]
Wu, S.; Qi, W.; Su, R.; Li, T.; Lu, D.; He, Z. 2014.
[35]
Gupta, N.; Vyas, V.K.; Patel, B.; Ghate, M. 2014.
[36]
Sharma, R.; Dhingra, N.; Patil, S. 2016.
[37]
Guariento, S.; Bruno, O.; Fossa, P.; Cichero, E. 2016.
[38]
Li, X.; Wang, H.; Lu, Z.; Zheng, X.; Ni, W.; Zhu, J.; Fu, Y.; Lian, F.; Zhang, N.; Li, J.; Zhang, H.; Mao, F. 2016.
[39]
Clark, M.; Cramer, R.D.; Van, O.N. 1989.
[40]
Cramer, R.D., III; Bunce, J.D.; Patterson, D.E.; Frank, I.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies., 1988.
[41]
Kellogg, G.E.; Semus, S.F.; Abraham, D.J. 1991.
[42]
Borisa, A.; Bhatt, H. 2015.
[43]
Klebe, G.; Abraham, U.; Mietzner, T. 1994.
[44]
Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Papadopoulos, M.G.; Mavromoustakos, T. 2009.
[45]
Dunn Iii, W.; Wold, S.; Edlund, U.; Hellberg, S.; Gasteiger, J. 1984.
[46]
Geladi, P. 1988.
[47]
Kubinyi, H.; Martin, Y.C.; Folkers, G. , 1993.
[48]
Bush, B.L.; Nachbar, R.B. 1993.
[49]
Moda, T.L.; Montanari, C.A.; Andricopulo, A.D. Hologram QSAR model for the prediction of human oral bioavailability., 2007.
[50]
Lowis, D.R. HQSAR: a new, highly predictive QSAR technique. Tripos. Technical. Notes, 1997, 1(5), 1-17.
[51]
Castilho, M.S.; Postigo, M.P.; de Paula, C.B.; Montanari, C.A.; Oliva, G.; Andricopulo, A.D. 2006.
[52]
Sainy, J.; Sharma, R. 2015.
[53]
Waller, C.L. 2004.
[54]
Zhang, H.; Li, H.; Liu, C. 2005.
[55]
Jiao, L.; Zhang, X.; Qin, Y.; Wang, X.; Li, H. Hologram QSAR study on the electrophoretic mobility of aromatic acids., 2016.
[56]
Sun, J.; Mei, H. 2015.
[57]
Ståhle, L.; Wold, S. 1987.
[58]
Wold, S. Cross-validatory estimation of the number of components in factor and principal components models., 1978.
[59]
Kearns, M.; Ron, D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation., 1999.
[60]
Golbraikh, A.; Tropsha, A. 2002.
[61]
Rácz, A.; Bajusz, D.; Héberger, K. 2015.
[62]
Wang, Z.; Cheng, L.; Kai, Z.; Wu, F.; Liu, Z.; Cai, M. 2014.
[63]
Zhang, S.; Lin, Z.; Pu, Y.; Zhang, Y.; Zhang, L.; Zuo, Z. 2017.
[64]
Lorca, M.; Morales-Verdejo, C.; Vásquez-Velásquez, D.; Andrades-Lagos, J.; Campanini-Salinas, J.; Soto-Delgado, J.; Recabarren-Gajardo, G.; Mella, J. 2018.
[65]
Rücker, C.; Rücker, G.; Meringer, M. 2007.
[66]
Dhingra, R.; Malhotra, M.; Sharma, V.; Bhardwaj, T.R.; Dhingra, N. 2018.
[67]
Weaver, S.; Gleeson, M.P. 2008.
[68]
Kaneko, H.; Funatsu, K. 2014.
[69]
Veerasamy, R. DRajak, H.; Jain, A.; Sivadasan, S.; Varghese, C. P.; Agrawal, R.K. Validation of QSAR models-strategies and importance. Inter. J. Drug Des. Discov., 2011, 2(3), 511-519.
[70]
Yang, X.; Liu, H.; Yang, Q.; Liu, J.; Chen, J.; Shi, L. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships., 2016.
[71]
Lei, T.; Chen, F.; Liu, H.; Sun, H.; Kang, Y.; Li, D.; Li, Y.; Hou, T. ADMET evaluation in drug discovery., 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy