[1]
Bukhari, S.N.A.; Jantan, I.; Masand, V.H.; Mahajan, D.T.; Sher, M.; Naeem-ul-Hassan, M.; Amjad, M.W. Novel series of 1,2,4-trioxane
derivatives as antimalarial agents. J. Enzyme Inhib. Med. Chem., 2014.32(1), 1159-1173..
[2]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. 2014.
[3]
Vitorović-Todorović, M.D.; Cvijetić, I.N.; Juranić, I.O.; Drakulić, B.J. 2012.
[4]
Dighe, S.N.; Deora, G.S.; De la Mora, E.; Nachon, F.; Chan, S.; Parat, M.O.; Brazzolotto, X.; Ross, B.P.; Ross, B.P. 2016.
[5]
Tam, C.; Wong, J.H.; Ng, T.B.; Tsui, S.K.W.; Zuo, T. Drugs for targeted therapies of Alzheimer’s disease., 2018.
[6]
Puiatti, M.; Borioni, J.L.; Vallejo, M.G.; Cabrera, J.L.; Agnese, A.M.; Ortega, M.G.; Pierini, A.B. 2013.
[7]
Mount, C.; Downton, C. Alzheimer disease: progress or profit?, 2006.
[8]
Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C. 2019.
[9]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y-C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. 1986.
[10]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease., 2009.
[11]
Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease., 2001.
[12]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[13]
Birks, J.; Iakovidou, V.; Tsolaki, M.; Tsolaki, M. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2000, CD001191(4)11034705
[14]
Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22(6), 273-280.
[15]
Raevsky, O.A.; Mukhametov, A.; Grigorev, V.Y.; Ustyugov, A.; Tsay, S.C.; Jih-Ru Hwu, R.; Yarla, N.S.; Tarasov, V.V.; Aliev, G.; Bachurin, S.O. Applications of multi-target computer-aided methodologies in molecular design of CNS drugs., 2018.
[17]
Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s disease: current status and new perspectives., 2003.
[18]
Cheng, Z.Q.; Zhu, K.K.; Zhang, J.; Song, J.L.; Muehlmann, L.A.; Jiang, C.S.; Liu, C.L.; Zhang, H. 2019.
[19]
Korabecny, J.; Dolezal, R.; Cabelova, P.; Horova, A.; Hruba, E.; Ricny, J.; Sedlacek, L.; Nepovimova, E.; Spilovska, K.; Andrs, M.; Musilek, K.; Opletalova, V.; Sepsova, V.; Ripova, D.; Kuca, K. 2014.
[20]
Sun, X.; Jin, L.; Ling, P. Review of drugs for Alzheimer’s disease., 2012.
[21]
Racchi, M.; Mazzucchelli, M.; Porrello, E.; Lanni, C.; Govoni, S. Acetylcholinesterase inhibitors: novel activities of old molecules., 2004.
[22]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease., 2013.
[23]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein., 1991.
[24]
Muñoz-Ruiz, P.; Rubio, L.; García-Palomero, E.; Dorronsoro, I.; del Monte-Millán, M.; Valenzuela, R.; Usán, P.; de Austria, C.; Bartolini, M.; Andrisano, V.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Medina, M.; Martínez, A. 2005.
[25]
Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. 2009.
[26]
Leonetti, F.; Catto, M.; Nicolotti, O.; Pisani, L.; Cappa, A.; Stefanachi, A.; Carotti, A.; Carotti, A. 2008.
[29]
Zheng, X.; He, M.; Tan, X.; Zheng, J.; Wang, F.; Liu, S. 2017.
[30]
Fang, C.; Xiao, Z. 2016.
[32]
Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 2017.
[33]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 2010.
[34]
Wu, S.; Qi, W.; Su, R.; Li, T.; Lu, D.; He, Z. 2014.
[35]
Gupta, N.; Vyas, V.K.; Patel, B.; Ghate, M. 2014.
[36]
Sharma, R.; Dhingra, N.; Patil, S. 2016.
[37]
Guariento, S.; Bruno, O.; Fossa, P.; Cichero, E. 2016.
[38]
Li, X.; Wang, H.; Lu, Z.; Zheng, X.; Ni, W.; Zhu, J.; Fu, Y.; Lian, F.; Zhang, N.; Li, J.; Zhang, H.; Mao, F. 2016.
[39]
Clark, M.; Cramer, R.D.; Van, O.N. 1989.
[40]
Cramer, R.D., III; Bunce, J.D.; Patterson, D.E.; Frank, I.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies., 1988.
[41]
Kellogg, G.E.; Semus, S.F.; Abraham, D.J. 1991.
[42]
Borisa, A.; Bhatt, H. 2015.
[43]
Klebe, G.; Abraham, U.; Mietzner, T. 1994.
[44]
Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Papadopoulos, M.G.; Mavromoustakos, T. 2009.
[45]
Dunn Iii, W.; Wold, S.; Edlund, U.; Hellberg, S.; Gasteiger, J. 1984.
[47]
Kubinyi, H.; Martin, Y.C.; Folkers, G. , 1993.
[48]
Bush, B.L.; Nachbar, R.B. 1993.
[49]
Moda, T.L.; Montanari, C.A.; Andricopulo, A.D. Hologram QSAR model for the prediction of human oral bioavailability., 2007.
[50]
Lowis, D.R. HQSAR: a new, highly predictive QSAR technique. Tripos. Technical. Notes, 1997, 1(5), 1-17.
[51]
Castilho, M.S.; Postigo, M.P.; de Paula, C.B.; Montanari, C.A.; Oliva, G.; Andricopulo, A.D. 2006.
[52]
Sainy, J.; Sharma, R. 2015.
[54]
Zhang, H.; Li, H.; Liu, C. 2005.
[55]
Jiao, L.; Zhang, X.; Qin, Y.; Wang, X.; Li, H. Hologram QSAR study on the electrophoretic mobility of aromatic acids., 2016.
[56]
Sun, J.; Mei, H. 2015.
[57]
Ståhle, L.; Wold, S. 1987.
[58]
Wold, S. Cross-validatory estimation of the number of components in factor and principal components models., 1978.
[59]
Kearns, M.; Ron, D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation., 1999.
[60]
Golbraikh, A.; Tropsha, A. 2002.
[61]
Rácz, A.; Bajusz, D.; Héberger, K. 2015.
[62]
Wang, Z.; Cheng, L.; Kai, Z.; Wu, F.; Liu, Z.; Cai, M. 2014.
[63]
Zhang, S.; Lin, Z.; Pu, Y.; Zhang, Y.; Zhang, L.; Zuo, Z. 2017.
[64]
Lorca, M.; Morales-Verdejo, C.; Vásquez-Velásquez, D.; Andrades-Lagos, J.; Campanini-Salinas, J.; Soto-Delgado, J.; Recabarren-Gajardo, G.; Mella, J. 2018.
[65]
Rücker, C.; Rücker, G.; Meringer, M. 2007.
[66]
Dhingra, R.; Malhotra, M.; Sharma, V.; Bhardwaj, T.R.; Dhingra, N. 2018.
[67]
Weaver, S.; Gleeson, M.P. 2008.
[68]
Kaneko, H.; Funatsu, K. 2014.
[69]
Veerasamy, R. DRajak, H.; Jain, A.; Sivadasan, S.; Varghese, C. P.; Agrawal, R.K. Validation of QSAR models-strategies and importance. Inter. J. Drug Des. Discov., 2011, 2(3), 511-519.
[70]
Yang, X.; Liu, H.; Yang, Q.; Liu, J.; Chen, J.; Shi, L. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships., 2016.
[71]
Lei, T.; Chen, F.; Liu, H.; Sun, H.; Kang, Y.; Li, D.; Li, Y.; Hou, T. ADMET evaluation in drug discovery., 2017.