Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Sensitive Detection of Levocetirizine as a new Generation Antihistamine by Stripping Square Wave Voltammetry

Author(s): Kubra Ozturk, Nurgul K. Bakirhan, Sibel A. Ozkan and Bengi Uslu*

Volume 16, Issue 4, 2020

Page: [424 - 437] Pages: 14

DOI: 10.2174/1573412915666190802165833

Price: $65

Abstract

Background: A new and selective electrochemical sensor was developed for the determination of levocetirizine dihydrochloride, which is an antihistaminic drug.

Methods: The investigation was performed by using cyclic, differential pulse and square wave voltammetric methods on the β-cyclodextrin modified glassy carbon electrode. It is thereby planned to obtain information about levocetirizine determination and its mechanism.

Results: The efficiency of experimental parameters including pH, scan rate, and accumulation potential and time on the anodic response of levocetirizine dihydrochloride was studied. By employing the developed method and under optimized conditions, the current showed linear dependence with a concentration in the range between 2 × 10-8 M and 6 × 10-6 M in pH 2.0 Britton Robinson (BR) buffer.

Conclusion: The achieved limits of detection and quantification were found as 3.73 × 10-10 M and 1.24 × 10-9 M, respectively. In addition, the possibility of applying the developed sensor for real sample analysis was investigated, so β-cyclodextrin modified glassy carbon electrode was used to determine levocetirizine dihydrochloride in Xyzal® tablet dosage form. Finally, this sensor was successfully applied to the real sample as a selective, simple, reproducible, repeatable electrochemical sensor.

Keywords: Levocetirizine, sensor, drug analysis, electrochemistry, solid electrode, tablet.

Graphical Abstract

[1]
Taylor, S.L.; Eitenmiller, R.R. Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol., 1986, 17(2), 91-128.
[http://dx.doi.org/10.3109/10408448609023767] [PMID: 3530640]
[2]
Mahdy, A.M.; Webster, N.R. Histamine and antihistamines anaesth. Intensive Care Med., 2014, 15, 250.
[3]
Mahdy, A.M.; Webster, N.R. Histamine and antihistamines anaesth. Intensive Care Med., 2011, 12, 324.
[4]
Tillement, J-P.; Testa, B.; Brée, F. Compared pharmacological characteristics in humans of racemic cetirizine and levocetirizine, two histamine H1-receptor antagonists. Biochem. Pharmacol., 2003, 66(7), 1123-1126.
[http://dx.doi.org/10.1016/S0006-2952(03)00558-6] [PMID: 14505791]
[5]
Arayne, M.S.; Sultana, N.; Nawaz, M.J. Simultaneous quantification of cefpirome and cetirizine or levocetirizine in pharmaceutical formulations and human plasma by RP-HPLC. Anal. Chem., 2008, 63, 881-887.
[http://dx.doi.org/10.1134/S1061934808090153]
[6]
Morita, M.R.; Berton, D.; Boldin, R.; Barros, F.A.P.; Meurer, E.C.; Amarante, A.R.; Campos, D.R.; Calafatti, S.A.; Pereira, R.; Abib, E., Jr; Pedrazolli, J., Jr Determination of levocetirizine in human plasma by liquid chromatography-electrospray tandem mass spectrometry: application to a bioequivalence study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 862(1-2), 132-139.
[http://dx.doi.org/10.1016/j.jchromb.2007.11.028] [PMID: 18162446]
[7]
Wang, J. Analytical Electrochemistry PLoS Comput Biol 2., 2006, 11, 147.
[8]
Wieckowski, A. A structured approach to reflective practice training in a clinical practicum. Train. Educ. Prof. Psychol., 2017, 11, 252-259.
[http://dx.doi.org/10.1037/tep0000170]
[9]
Uslu, B.; Ozkan, S. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett., 2007, 40, 817-853.
[http://dx.doi.org/10.1080/00032710701242121]
[10]
Radi, A.; El Ries, M.A.; Kandil, S. Spectroscopic and voltammetric studies of pefloxacin bound to calf thymus double-stranded DNA. Anal. Bioanal. Chem., 2005, 381(2), 451-455.
[http://dx.doi.org/10.1007/s00216-004-2882-9] [PMID: 15657711]
[11]
Karadurmus, L.; Kır, D.; Kurbanoglu, S.; Ozkan, S.A. Electrochemical analysis of antipsychotics. Curr. Pharm. Anal., 2019, 15, 413-428.
[http://dx.doi.org/10.2174/1573412914666180710114458]
[12]
Al-Hashimi, N.N.; Awwad, A.I.; Al-Hashimi, A.N.; Mansi, I.A.; Shahin, R.O.; Hamed, S.H. Functionalized multi walled carbon nanotubes-reinforced hollow fiber solid/liquid phase microextraction and HPLC-DAD for determination of phenazopyridine in urine. Curr. Pharm. Anal., 2019, 15, 447-455.
[http://dx.doi.org/10.2174/1573412914666180329153443]
[13]
Yagci, S.Z.; Savan, E.K. Electrochemical determination of norepinephrine at poly (paminobenzenesulfonic acid) modified sensor. Curr. Pharm. Anal., (E-pub Ahead of Print), , 1-9.
[14]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Rapid electrochemical ultra-sensitive evaluation and determination of daptomycin based on continuous cyclic voltammetry. Curr. Pharm. Anal., 2020, 16(2), 181-185.
[15]
Pei, L.; Qiu, F.; Ma, Y.; Lin, F.; Fan, C.; Xianzhang, L. Polyaniline/al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid. Curr. Pharm. Anal., 2020, 16(2), 153-158.
[16]
Bozal-Palabiyik, B.; Erkmen, C.; Uslu, B. Molecularly imprinted electrochemical sensors: analytical and pharmaceutical applications based on ortho-phenylenediamine polymerization. Curr. Pharm. Anal., 2020, 16(4), 350-366.
[17]
Kaya, S.I.; Karabulut, T.C.; Kurbanoglu, S.; Ozkan, S.A. Chemically modified electrodes in electrochemical drug analysis. Curr. Pharm. Anal., (E-pub Ahead of Print).
[18]
Agin, F. Voltammetrıc determınatıon of guaifenesin in pharmaceuticals and urine samples based on poly(bromocresol purple) modıfıed glassy carbon electrode. Curr. Pharm. Anal., (E-pub Ahead of Print).,
[19]
Karadurmuz, L.; Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. Electrochemical DNA biosensors in drug analysis. Curr. Pharm. Anal., 2017, 13. Curr. Pharm. Anal., 2017, 13(3), 195-207.
[20]
M. A.. Dominguez-Renedo, O. Screen-printed biosensors in drug analysis. Curr. Pharm. Anal., 2017, 13, 169-174.
[21]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Rapid electrochemical ultra-sensitive evaluation and determination of daptomycin based on continuous cyclic voltammetry. Curr. Pharm. Anal. Curr. Pharm. Anal., 2020, 16(2), 181-185.
[22]
Tumur, M.; Saydan Kanberoglu, G.; Coldur, F. A novel potentiometric PVC-membrane cysteamine-selective electrode based on cysteamine-phosphomolybdate ion-pair. Curr. Pharm. Anal. Curr. Pharm. Anal., 2020, 16(2), 168-175.
[http://dx.doi.org/10.2174/1573412914666181017150529]
[23]
Dedeoglu, A.; Karadas, N. Unal, M.A.; Kocum, İ.C.; Cokeliler, S.D.; Ozkan, S.A. Calibration of quartz tuning fork transducer by coulometry for mass sensitive sensor studies. J. Electroanal. Chem. (Lausanne Switz.), 2019, 834, 8-16.
[http://dx.doi.org/10.1016/j.jelechem.2018.12.003]
[24]
Celik, M.S.; Celik, H.; Bakirhan, N.K.; Uslu, B.; Ozkan, S.A. Polarographic investigation of dienogest. J. Electrochem. Soc., 2018, 165(10), 128-132.
[25]
Kauffmann, J.M.; Bakirhan, N.K.; Bozal-Palabiyik, B.; Uslu, B.; Rodriguez Gomez, R.; Vandeput, M.; Ozkan, S.A. Electrochemical detectors in liquid chromatography: recent trends in pharmaceutical and biomedical analysis. Curr. Med. Chem., 2018, 25(33), 4050-4065.
[http://dx.doi.org/10.2174/0929867324666170609074826] [PMID: 28595548]
[26]
Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal., 2018, 159(33), 406-424.
[http://dx.doi.org/10.1016/j.jpba.2018.07.021] [PMID: 30036704]
[27]
Bakirhan, N.K.; Celik, M.S.; Celik, H.; Uslu, B.; Ozkan, S.A. Electrochemical approach on mechanism of an oral progestin in aqueous media and its fully validated detection via a carbon-metal based composite. Sensor Electroanalysis, 2018, 30(10), 2273-2283.
[http://dx.doi.org/10.1002/elan.201800373]
[28]
Kurbanoglu, S.; Bakirhan, N.K.; Gumustas, M.; Ozkan, S.A. Modern assay techniques for cancer drugs: electroanalytical and liquid chromatography methods. Crit. Rev. Anal. Chem., 2018, 30(10), 1-18.
[29]
Zaabal, M.; Doulache, M.; Bakirhan, N.K.; Kaddour, S.; Saidat, B.; Ozkan, S.A. A facile strategy for construction of sensor for detection of ondansetron and investigation of its redox behavior and thermodynamic parameters. Electroanalysis, 2018, 30(10), 1-18.
[30]
Bakirhan, N.K.; Patris, S.; Ozkan, S.A.; Can, A.; Kauffmann, J.M. Determination of the anticancer drug sorafenib in serum by adsorptive stripping differential pulse voltammetry using a chitosan multiwall carbon nanotube modified glassy carbon electrode. Electroanalysis, 2016, 28(2), 358-365.
[31]
Brycht, M.; Skryzpek, S.; Bakirhan, N.K.; Smarzewska, S.; Bozal, P.B.; Ozkan, S.A.; Uslu, B. Voltammetric behavior and determination of antidepressant drug paroxetine at carbon based electrodes. Ionics, 2015, 21(8), 2345-2354.
[http://dx.doi.org/10.1007/s11581-015-1390-6]
[32]
Agın, F.; Bakirhan, N.K.; Uslu, B.; Ozkan, S.A. Electroanalytical characterization of levodropropizine and its voltammetric determination in pharmaceuticals. Curr. Pharm. Anal., 2013, 9(3), 299-309.
[33]
Bakirhan, N.K.; Taskın, T.T.; Ozkan, S.A. The redox mechanism investigation of non-small cell lung cancer drug: Erlotinib via theoretical and experimental techniques and its host–guest detection by β-Cyclodextrin nanoparticles modified glassy carbon electrode. Sens. Actuators B Chem., 2011, 278(7-8), 172-180.
[34]
Aftab, S.; Kurbanoglu, S.; Ozcelikay, G.; Bakirhan, N.K.; Shah, A.; Ozkan, S.A. Carbon quantum dots co-catalyzed with multiwalled carbon nanotubes and silver nanoparticles modified nanosensor for the electrochemical assay of anti-HIV drug Rilpivirine. Sens. Actuators B Chem., 2019, 285, 571-583.
[http://dx.doi.org/10.1016/j.snb.2019.01.094]
[35]
Doulache, M.; Bakirhan, N.K.; Uslu, B.; Saidat, B.; Trari, M.; Ozkan, S.A. Simple and sensitive adsorptive stripping voltammetric assay of granisetron from its dosage form by platinum nanoparticles modified electrodes. Sens. Actuators B Chem., 2017, 251, 572-582.
[http://dx.doi.org/10.1016/j.snb.2017.05.036]
[36]
Bakirhan, N.K.; Ozkan, S.A. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: pemetrexed. Talanta, 2014, 119(8), 248-254.
[37]
Karadas, N.; Sanli, S.; Akmese, B.; Dogan-Topal, B.; Can, A.; Ozkan, S.A. Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta, 2013, 115(7-8), 911-919.
[http://dx.doi.org/10.1016/j.talanta.2013.07.006] [PMID: 24054682]
[38]
Aftab, S.; Ozcelikay, G.; Kurbanoglu, S.; Shah, A.; Iftikhar, F.J.; Ozkan, S.A. A novel electrochemical nanosensor based on NH2-functionalized multi walled carbon nanotubes for the determination of catechol-orto-methyltransferase inhibitor entacapone. J. Pharm. Biomed. Anal., 2019, 165, 73-81.
[http://dx.doi.org/10.1016/j.jpba.2018.11.050] [PMID: 30503895]
[39]
Karadurmus, L.; Sahin, I.F.; Kurbanoglu, S.; Ozkan, S.A. Electrochemical determination of non-steroidal anti-inflammatory drugs. Curr. Anal. Chem., 2018, 14, 1-17.
[40]
Yarman, A.; Kurbanoglu, S.; Jetzschmann, K.J.; Ozkan, S.A.; Wollenberger, U.; Scheller, F.W. Electrochemical MIP-Sensors for drugs. Curr. Med. Chem., 2018, 25(33), 4007-4019.
[http://dx.doi.org/10.2174/0929867324666171005103712] [PMID: 28982312]
[41]
Brycht, M.; Skrzypek, S.; Bakirhan, N.K.; Smarzewska, S.; Bozal-Palabiyik, B.; Ozkan, S.A.; Uslu, B. Voltammetric behavior and determination of antidepressant drug paroxetine at carbon-based electrodes. Ionics, 2015, 21, 2345-2354.
[http://dx.doi.org/10.1007/s11581-015-1390-6]
[42]
Bozal-Palabiyik, B.; Uslu, B. Voltammetric investigation and determination of piribedil in pharmaceutical dosage forms using carbon-based electrodes. Curr. Pharm. Anal., 2017, 1, 91-98.
[43]
Bozal-Palabiyik, B.; Uslu, B. A novel electroanalytical nanosensor based on MWCNT/Fe2O3 nanoparticles for the determination of antiparkinson drug ropinirole. Ionics, 2016, 22, 115-123.
[http://dx.doi.org/10.1007/s11581-015-1525-9]
[44]
Bozal, B.; Uslu, B. Applications of carbon based electrodes for voltammetric determination of lornoxicam in pharmaceutical dosage form and human serum. Comb. Chem. High Throughput Screen., 2010, 13(7), 598-609.
[http://dx.doi.org/10.2174/1386207311004070599] [PMID: 20402638]
[45]
Dogan-Topal, B.; Ozkan, S.A. A novel sensitive electrochemical DNA biosensor for assaying of anticancer drug leuprolide and its adsorptive stripping voltammetric determination. Talanta, 2011, 83(3), 780-788.
[http://dx.doi.org/10.1016/j.talanta.2010.10.049] [PMID: 21147320]
[46]
Dogan, T.B.; Tuncel, S.; Ozkan, S.A. Anodic voltammetric behavior and determination of rosiglitazone in pharmaceutical dosage forms and biological fluids on solid electrode comb. Chem. High Throughput Screening, 2010, 13(8), 694-702.
[http://dx.doi.org/10.2174/138620710791920419]
[47]
Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: the interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron., 2009, 24(8), 2358-2364.
[http://dx.doi.org/10.1016/j.bios.2008.12.005] [PMID: 19135352]
[48]
Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Investigation of electrochemical behavior of lipid lowering agent atorvastatin calcium in aqueous media and its determination from pharmaceutical dosage forms and biological fluids using boron-doped diamond and glassy carbon electrodes. Comb. Chem. High Throughput Screen., 2007, 10(7), 571-582.
[http://dx.doi.org/10.2174/138620707782152407] [PMID: 17979640]
[49]
Tuncel, M.; Dogrukol-Ak, D.; Yeniceli, D.; Uslu, B.; Dogan, B.C.E. Determination of droperidol in tablets and human serum. Chromatographia, 2006, 63, 507-511.
[50]
Yuksel, A.; Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Anodic behavior of sertindole and its voltammetric determination in pharmaceuticals and human serum using glassy carbon and boron-doped diamond electrodes. Electrochim. Acta, 2009, 54, 1893-1903.
[http://dx.doi.org/10.1016/j.electacta.2008.10.010]
[51]
Tarınc, D.; Dogan Topal, B.; Dolaz, M.; Golcu, A.; Ozkan, S.A. Synthesis, characterization, biological activity and voltammetric behavior and determination of cefaclor metal complexes. Curr. Anal. Chem., 2010, 6, 316-328.
[52]
Satana, H.E.; Dogan-Topal, B.; Ozkan, S.A. Electrochemical characterization and rapid voltammetric determination of riluzole in pharmaceuticals and human serum. Anal. Lett., 2011, 44, 976-990.
[53]
Dogan-Topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode. J. Solid State Electrochem., 2013, 17, 1059-1066.
[http://dx.doi.org/10.1007/s10008-012-1967-1]
[54]
Kul, D.; Dogan-Topal, B.; Ozkan, S.A.; Uslu, B. Poly(acridine orange)-modified glassy carbon electrodes: electrosynthesis, characterisation and sensor application with uric acid. J. Appl. Electrochem., 2014, 44, 831-840.
[http://dx.doi.org/10.1007/s10800-014-0691-1]
[55]
Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry; Kluwer Academic publishers: Boston, 1998, p. 1743.
[http://dx.doi.org/10.1021/cr970022c]
[56]
Bender, M. L.; Komiyama, M. Cyclodextrin chemistry Conc. Org. Chem, 1978, 6.
[57]
Matsue, T.; Tasaki, C.; Fujihira, M.; Osa, T. Supression of electro reductive dimerization of benzaldelyde by addition of x-cyclodextrin. Bull. Chem. Soc. Jpn., 1983, 56, 1305.
[http://dx.doi.org/10.1246/bcsj.56.1305]
[58]
Taneri, F.; Güneri, T.; Aigner, Z.; Berkesi, O.; Kata, M.J. Thermoanalytical studies on complexes of KCZ with cyclodextrin derivatives. Therm. Anal. Calorim., 2003, 74, 769-777.
[http://dx.doi.org/10.1023/B:JTAN.0000011009.46113.01]
[59]
Ferancová, A.; Labuda, J. Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem., 2001, 370(1), 1-10.
[http://dx.doi.org/10.1007/s002160100752] [PMID: 11393226]
[60]
Bersier, P.M.; Bersier, J.; Klingert, B. Electrochemistry of cyclodextrins and cyclodextrin inclusion complexes. Electroanalysis. Electroanal., 1991, 3, 443-455.
[http://dx.doi.org/10.1002/elan.1140030603]
[61]
D’Souza, F.; Hsieh, Y.Y.; Wickman, H.; Kutner, W.J. New sensor for dissolved dioxygen: a gold electrode modified with a condensation polymer film of ß-cyclodextrin hosting cobalt tetra phenylporphyrin. Electroanal., 1997, 9, 1093-1101.
[62]
Kutner, W.; Doblhofer, K. Simultaneous cyclic voltammetry and electrochemical quartz – crystal micro balance study at polymer film – modified electrodes of molecular inclusion of ferrocene by ßcyclodextrin- polymer and carboxy methylated ß-cyclodextrinpolymer as well as ferrocene carboxylic by ß-cyclodextrin-polymer. J. Electroanal. Chem. (Lausanne Switz.), 1992, 326, 139-160.
[http://dx.doi.org/10.1016/0022-0728(92)80509-3]
[63]
Güngör, S.D.D. Electrooxidation of cetirizine dihydrochloride with a glassy carbon electrode. Pharmazie, 2004, 59(12), 929-933.
[PMID: 15638080]
[64]
Cheng, Q.; Ji, L.; Wu, K.; Zhang, W. Morphology-dependent electrochemicalenhancements of porous carbon as sensitive determination platform forascorbic acid, dopamine and uric acid. Sci. Rep., 2016, 6, 22309.
[http://dx.doi.org/10.1038/srep22309] [PMID: 26924080]
[65]
Tovide, O.; Jaheed, N.; Mohamed, N.; Nxusadi, E.; Sunday, C.E. Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene. Electrochim. Acta, 2014, 128, 138-148.
[http://dx.doi.org/10.1016/j.electacta.2013.12.134]
[66]
Omolola, E.F.; Abolanle, S.A. Metal oxide nanoparticles/multi-walled carbon nanotube nanocomposite modified electrode for the detection of dopamine: comparative electrochemical study. Eno E. E. IJBSBE, 2015, 6(4)1000190
[67]
Ağın, F.; Karadaş, N.; Uslu, B.; Özkan, S.A. Voltammetric and RP–LC assay for the antidepressant drug mirtazapine: a validated method for the pharmaceutical dosage form Maced. J. Chem. Chem., 2013, 32, 41.
[68]
Kul, D.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta, 2010, 82(1), 286-295.
[http://dx.doi.org/10.1016/j.talanta.2010.04.036] [PMID: 20685469]
[69]
Gholivand, M.B.; Karimian, N. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprented polymer and gold nanoparticals on multiwalled carbonnanotubes / glassy carbon electrode. Sens. Actuators B Chem., 2015, 215, 471.
[http://dx.doi.org/10.1016/j.snb.2015.04.007]
[70]
Ozkan, S.A. Electrochemical Methods in Pharmaceutical Analysis and Their Validation; HNB Pub: New York, NY, USA, 2012.
[71]
Riley, C.M.; Rosanske, T.; Pergamon, W. Development And Validation of Analytical Methods, 1st ed; Pergamon: Elsevier, 1996.
[72]
Ermer, J.; Miller, McB. Method Validation in Pharmaceutical Analysis; Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
[73]
Swartz, M.; Dekker, M. Analytical method development and validation. J. Liq. Chromatogr. Relat. Technol., 1998, 21, 3.
[74]
Lin, H.; Li, G.; Wu, K. Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem., 2008, 107, 531-536.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.022]

© 2025 Bentham Science Publishers | Privacy Policy