Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

大中性氨基酸转运蛋白(LAT1)在癌症中的作用

卷 19, 期 11, 2019

页: [863 - 876] 页: 14

弟呕挨: 10.2174/1568009619666190802135714

价格: $65

摘要

背景:溶质载体家族7(SLC7)可以分为两个亚家族,包括SLC7A5-13和SLC7A15的L型氨基酸转运蛋白(LAT),以及包括SLC7A1-4和SLC7A14的阳离子氨基酸转运蛋白(CAT)。CAT家族的成员通过促进与细胞内底物的扩散而主要运输阳离子氨基酸。 LAT1(也称为SLC7A5)被定义为通过保守的二硫键与糖蛋白CD98(SLC3A2)相互作用的异聚氨基酸转运蛋白(HAT),不仅可以吸收大的中性氨基酸,而且还可以吸收多种药物进入细胞。 方法:在这篇综述中,我们概述了LAT1的结构功能与其在癌症中的基本作用之间的相互作用,特别是它在血脑屏障(BBB)中的作用,以促进甲状腺激素,药物的运输(例如I-DOPA,加巴喷丁)和代谢物进入大脑。 结果:随着癌症的进展,LAT1的表达增加,从而导致高级别肿瘤和转移灶中的表达水平升高。另外,通过为肿瘤细胞提供必需氨基酸,LAT1在癌症相关的重编程代谢网络中也起着至关重要的作用。 结论:人们对LAT1在癌症中的作用的日益了解导致人们对其作为癌症治疗药物靶标的潜力越来越感兴趣。

关键词: LAT1,癌症,结构,转运蛋白,抑制剂,异聚氨基酸转运蛋白(HAT)。

[1]
Verrey, F.; Closs, E.I.; Wagner, C.A.; Palacin, M.; Endou, H.; Kanai, Y. CATs and HATs: The SLC7 family of amino acid transporters. Pflugers Arch., 2004, 447(5), 532-542.
[http://dx.doi.org/10.1007/s00424-003-1086-z] [PMID: 14770310]
[2]
Wolf, S.; Janzen, A.; Vékony, N.; Martiné, U.; Strand, D.; Closs, E.I. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem. J., 2002, 364(Pt 3), 767-775.
[http://dx.doi.org/10.1042/bj20020084] [PMID: 12049641]
[3]
Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem. J., 2003, 373(Pt 1), 1-18.
[http://dx.doi.org/10.1042/bj20030405] [PMID: 12879880]
[4]
Matherly, L.H.; Wilson, M.R.; Hou, Z. The major facilitative folate transporters SLC19A1 and SLC46A1: Biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos., 2014, 42, 632-649.
[http://dx.doi.org/10.1124/dmd.113.055723] [PMID: 24396145]
[5]
Desmoulin, S.K.; Hou, Z.; Gangjee, A.; Matherly, L.H. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol. Ther., 2012, 13(14), 1355-1373.
[http://dx.doi.org/10.4161/cbt.22020] [PMID: 22954694]
[6]
Trippett, T.M.; Bertino, J.R. Therapeutic strategies targeting proteins that regulate folate and reduced folate transport. J. Chemother., 1999, 11(1), 3-10.
[http://dx.doi.org/10.1179/joc.1999.11.1.3] [PMID: 10078775]
[7]
Nies, A.T.; Koepsell, H.; Winter, S.; Burk, O.; Klein, K.; Kerb, R.; Zanger, U.M.; Keppler, D.; Schwab, M.; Schaeffeler, E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50(4), 1227-1240.
[http://dx.doi.org/10.1002/hep.23103] [PMID: 19591196]
[8]
Koepsell, H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med., 2013, 34(2-3), 413-435.
[http://dx.doi.org/10.1016/j.mam.2012.10.010] [PMID: 23506881]
[9]
Mastroberardino, L.; Spindler, B.; Pfeiffer, R.; Skelly, P.J.; Loffing, J.; Shoemaker, C.B.; Verrey, F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature, 1998, 395(6699), 288-291.
[http://dx.doi.org/10.1038/26246] [PMID: 9751058]
[10]
Closs, E.I.; Boissel, J.P.; Habermeier, A.; Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol., 2006, 213(2), 67-77.
[http://dx.doi.org/10.1007/s00232-006-0875-7] [PMID: 17417706]
[11]
Kucharzik, T.; Lugering, A.; Yan, Y.; Driss, A.; Charrier, L.; Sitaraman, S.; Merlin, D. Activation of epithelial CD98 glycoprotein perpetuates colonic inflammation. Lab. Invest., 2005, 85(7), 932-941.
[http://dx.doi.org/10.1038/labinvest.3700289] [PMID: 15880135]
[12]
Lemaître, G.; Gonnet, F.; Vaigot, P.; Gidrol, X.; Martin, M.T.; Tortajada, J.; Waksman, G. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics, 2005, 5(14), 3637-3645.
[http://dx.doi.org/10.1002/pmic.200401224] [PMID: 16097038]
[13]
Haynes, B.F.; Hemler, M.E.; Mann, D.L.; Eisenbarth, G.S.; Shelhamer, J.; Mostowski, H.S.; Thomas, C.A.; Strominger, J.L.; Fauci, A.S. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J. Immunol., 1981, 126(4), 1409-1414.
[PMID: 7204970]
[14]
Cantor, J.; Browne, C.D.; Ruppert, R.; Féral, C.C.; Fässler, R.; Rickert, R.C.; Ginsberg, M.H. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol., 2009, 10(4), 412-419.
[http://dx.doi.org/10.1038/ni.1712] [PMID: 19270713]
[15]
Fogelstrand, P.; Féral, C.C.; Zargham, R.; Ginsberg, M.H. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J. Exp. Med., 2009, 206(11), 2397-2406.
[http://dx.doi.org/10.1084/jem.20082845] [PMID: 19841087]
[16]
Estrach, S.; Lee, S.A.; Boulter, E.; Pisano, S.; Errante, A.; Tissot, F.S.; Cailleteau, L.; Pons, C.; Ginsberg, M.H.; Féral, C.C. CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res., 2014, 74(23), 6878-6889.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0579] [PMID: 25267066]
[17]
Feral, C.C.; Nishiya, N.; Fenczik, C.A.; Stuhlmann, H.; Slepak, M.; Ginsberg, M.H. CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 355-360.
[http://dx.doi.org/10.1073/pnas.0404852102] [PMID: 15625115]
[18]
Bajaj, J.; Konuma, T.; Lytle, N.K.; Kwon, H.Y.; Ablack, J.N.; Cantor, J.M.; Rizzieri, D.; Chuah, C.; Oehler, V.G.; Broome, E.H.; Ball, E.D.; van der Horst, E.H.; Ginsberg, M.H.; Reya, T. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5), 792-805.
[http://dx.doi.org/10.1016/j.ccell.2016.10.003] [PMID: 27908736]
[19]
Prager, G.W.; Féral, C.C.; Kim, C.; Han, J.; Ginsberg, M.H. CD98hc (SLC3A2) interaction with the integrin beta subunit cytoplasmic domain mediates adhesive signaling. J. Biol. Chem., 2007, 282(33), 24477-24484.
[http://dx.doi.org/10.1074/jbc.M702877200] [PMID: 17597067]
[20]
Yanagida, O.; Kanai, Y.; Chairoungdua, A.; Kim, D.K.; Segawa, H.; Nii, T.; Cha, S.H.; Matsuo, H.; Fukushima, J.; Fukasawa, Y.; Tani, Y.; Taketani, Y.; Uchino, H.; Kim, J.Y.; Inatomi, J.; Okayasu, I.; Miyamoto, K.; Takeda, E.; Goya, T.; Endou, H. Human L-type amino acid transporter 1 (LAT1): Characterization of function and expression in tumor cell lines. Biochim. Biophys. Acta, 2001, 1514(2), 291-302.
[http://dx.doi.org/10.1016/S0005-2736(01)00384-4] [PMID: 11557028]
[21]
Kaira, K.; Oriuchi, N.; Otani, Y.; Shimizu, K.; Tanaka, S.; Imai, H.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Ishizuka, T.; Dobashi, K.; Kanai, Y.; Endou, H.; Nakajima, T.; Endo, K.; Mori, M. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin. Cancer Res., 2007, 13(21), 6369-6378.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1294] [PMID: 17975149]
[22]
Kaira, K.; Oriuchi, N.; Takahashi, T.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Kanai, Y. L-type amino acid transporter 1 (LAT1) expression in malignant pleural mesothelioma. Anticancer Res., 2011, 31(12), 4075-4082.
[23]
Wempe, M.F.; Rice, P.J.; Lightner, J.W.; Jutabha, P.; Hayashi, M.; Anzai, N.; Wakui, S.; Kusuhara, H.; Sugiyama, Y.; Endou, H. Metabolism and pharmacokinetic studies of JPH203, an L-amino acid transporter 1 (LAT1) selective compound. Drug Metab. Pharmacokinet., 2012, 27(1), 155-161.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-091] [PMID: 21914964]
[24]
Poncet, N.; Mitchell, F.E.; Ibrahim, A.F.; McGuire, V.A.; English, G.; Arthur, J.S.; Shi, Y.B.; Taylor, P.M. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One, 2014, 9(2)e89547
[http://dx.doi.org/10.1371/journal.pone.0089547] [PMID: 24586861]
[25]
Verrey, F.; System, L. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch., 2003, 445(5), 529-533.
[http://dx.doi.org/10.1007/s00424-002-0973-z] [PMID: 12634921]
[26]
Bodoy, S.; Martín, L.; Zorzano, A.; Palacín, M.; Estévez, R.; Bertran, J. Identification of LAT4, a novel amino acid transporter with system L activity. J. Biol. Chem., 2005, 280(12), 12002-12011.
[http://dx.doi.org/10.1074/jbc.M408638200] [PMID: 15659399]
[27]
Jin, S.E.; Jin, H.E.; Hong, S.S. Targeting L-type amino acid transporter 1 for anticancer therapy: Clinical impact from diagnostics to therapeutics. Expert Opin. Ther. Targets, 2015, 19(10), 1319-1337.
[http://dx.doi.org/10.1517/14728222.2015.1044975] [PMID: 25968633]
[28]
Napolitano, L.; Scalise, M.; Galluccio, M.; Pochini, L.; Albanese, L.M.; Indiveri, C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int. J. Biochem. Cell Biol., 2015, 67, 25-33.
[http://dx.doi.org/10.1016/j.biocel.2015.08.004] [PMID: 26256001]
[29]
Dickens, D.; Webb, S.D.; Antonyuk, S.; Giannoudis, A.; Owen, A.; Rädisch, S.; Hasnain, S.S.; Pirmohamed, M. Transport of gabapentin by LAT1 (SLC7A5). Biochem. Pharmacol., 2013, 85(11), 1672-1683.
[http://dx.doi.org/10.1016/j.bcp.2013.03.022] [PMID: 23567998]
[30]
Uchino, H.; Kanai, Y.; Kim, D.K.; Wempe, M.F.; Chairoungdua, A.; Morimoto, E.; Anders, M.W.; Endou, H. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): Insights into the mechanisms of substrate recognition. Mol. Pharmacol., 2002, 61(4), 729-737.
[http://dx.doi.org/10.1124/mol.61.4.729] [PMID: 11901210]
[31]
Yan, R.; Zhao, X.; Lei, J.; Zhou, Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature, 2019, 568(7750), 127-130.
[http://dx.doi.org/10.1038/s41586-019-1011-z] [PMID: 30867591]
[32]
Dickens, D.; Chiduza, G.N.; Wright, G.S.; Pirmohamed, M.; Antonyuk, S.V.; Hasnain, S.S. Modulation of LAT1 (SLC7A5) transporter activity and stability by membrane cholesterol. Sci. Rep., 2017, 7, 43580.
[http://dx.doi.org/10.1038/srep43580] [PMID: 28272458]
[33]
Costa, M.; Rosell, A.; Álvarez-Marimon, E.; Zorzano, A.; Fotiadis, D.; Palacín, M. Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris. Protein Expr. Purif., 2013, 87(1), 35-40.
[http://dx.doi.org/10.1016/j.pep.2012.10.003] [PMID: 23085088]
[34]
Shaffer, P.L.; Goehring, A.; Shankaranarayanan, A.; Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science, 2009, 325(5943), 1010-1014.
[http://dx.doi.org/10.1126/science.1176088] [PMID: 19608859]
[35]
Rosell, A.; Meury, M.; Álvarez-Marimon, E.; Costa, M.; Pérez-Cano, L.; Zorzano, A.; Fernández-Recio, J.; Palacín, M.; Fotiadis, D. Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 2966-2971.
[http://dx.doi.org/10.1073/pnas.1323779111] [PMID: 24516142]
[36]
Estévez, R.; Camps, M.; Rojas, A.M.; Testar, X.; Devés, R.; Hediger, M.A.; Zorzano, A.; Palacín, M. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J., 1998, 12(13), 1319-1329.
[http://dx.doi.org/10.1096/fasebj.12.13.1319] [PMID: 9761775]
[37]
Gao, X.; Zhou, L.; Jiao, X.; Lu, F.; Yan, C.; Zeng, X.; Wang, J.; Shi, Y. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature, 2010, 463(7282), 828-832.
[http://dx.doi.org/10.1038/nature08741] [PMID: 20090677]
[38]
Ilgü, H.; Jeckelmann, J.M.; Gapsys, V.; Ucurum, Z.; de Groot, B.L.; Fotiadis, D. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC. Proc. Natl. Acad. Sci. USA, 2016, 113(37), 10358-10363.
[http://dx.doi.org/10.1073/pnas.1605442113] [PMID: 27582465]
[39]
Casagrande, F.; Ratera, M.; Schenk, A.D.; Chami, M.; Valencia, E.; Lopez, J.M.; Torrents, D.; Engel, A.; Palacin, M.; Fotiadis, D. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem., 2008, 283(48), 33240-33248.
[http://dx.doi.org/10.1074/jbc.M806917200] [PMID: 18819925]
[40]
Fang, Y.; Kolmakova-Partensky, L.; Miller, C. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem., 2007, 282(1), 176-182.
[http://dx.doi.org/10.1074/jbc.M610075200] [PMID: 17099215]
[41]
Shih, A.Y.; Murphy, T.H. xCt cystine transporter expression in HEK293 cells: pharmacology and localization. Biochem. Biophys. Res. Commun., 2001, 282(5), 1132-1137.
[http://dx.doi.org/10.1006/bbrc.2001.4703] [PMID: 11302733]
[42]
Sato, H.; Tamba, M.; Kuriyama-Matsumura, K.; Okuno, S.; Bannai, S. Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc-. Antioxid. Redox Signal., 2000, 2(4), 665-671.
[http://dx.doi.org/10.1089/ars.2000.2.4-665] [PMID: 11213471]
[43]
Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; Smith, S.B.; Ganapathy, V.; Maher, P. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal., 2013, 18(5), 522-555.
[http://dx.doi.org/10.1089/ars.2011.4391] [PMID: 22667998]
[44]
Lim, J.K.M.; Delaidelli, A.; Minaker, S.W.; Zhang, H.F.; Colovic, M.; Yang, H.; Negri, G.L.; von Karstedt, S.; Lockwood, W.W.; Schaffer, P.; Leprivier, G.; Sorensen, P.H. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9433-9442.
[http://dx.doi.org/10.1073/pnas.1821323116] [PMID: 31000598]
[45]
Conrad, M.; Sato, H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): Cystine supplier and beyond. Amino Acids, 2012, 42(1), 231-246.
[http://dx.doi.org/10.1007/s00726-011-0867-5] [PMID: 21409388]
[46]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[47]
de Sá, Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The roles of ROS in cancer heterogeneity and therapy. Oxid. Med. Cell. Longev., 2017.20172467940
[http://dx.doi.org/10.1155/2017/2467940] [PMID: 29123614]
[48]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[49]
Lo, M.; Wang, Y.Z.; Gout, P.W. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J. Cell. Physiol., 2008, 215(3), 593-602.
[http://dx.doi.org/10.1002/jcp.21366] [PMID: 18181196]
[50]
Haining, Z.; Kawai, N.; Miyake, K.; Okada, M.; Okubo, S.; Zhang, X.; Fei, Z.; Tamiya, T. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin. Pathol., 2012, 12(1), 4.
[51]
Fuchs, B.C.; Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol., 2005, 15(4), 254-266.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.005] [PMID: 15916903]
[52]
Yamauchi, K.; Sakurai, H.; Kimura, T.; Wiriyasermkul, P.; Nagamori, S.; Kanai, Y.; Kohno, N. System L amino acid transporter inhibitor enhances anti-tumor activity of cisplatin in a head and neck squamous cell carcinoma cell line. Cancer Lett., 2009, 276(1), 95-101.
[http://dx.doi.org/10.1016/j.canlet.2008.10.035] [PMID: 19058911]
[53]
Fuchs, B.C.; Finger, R.E.; Onan, M.C.; Bode, B.P. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am. J. Physiol. Cell Physiol., 2007, 293(1), C55-C63.
[http://dx.doi.org/10.1152/ajpcell.00330.2006] [PMID: 17329400]
[54]
Klionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[55]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[56]
Yue, Z.; Jin, S.; Yang, C.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15077-15082.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[57]
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; Nelson, D.A.; Jin, S.; White, E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1), 51-64.
[http://dx.doi.org/10.1016/j.ccr.2006.06.001] [PMID: 16843265]
[58]
Napolitano, L.; Galluccio, M.; Scalise, M.; Parravicini, C.; Palazzolo, L.; Eberini, I.; Indiveri, C. Novel insights into the transport mechanism of the human amino acid transporter LAT1 (SLC7A5). Probing critical residues for substrate translocation. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 727-736.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.013] [PMID: 28088504]
[59]
Liang, N.; Zhang, C.; Dill, P.; Panasyuk, G.; Pion, D.; Koka, V.; Gallazzini, M.; Olson, E.N.; Lam, H.; Henske, E.P.; Dong, Z.; Apte, U.; Pallet, N.; Johnson, R.L.; Terzi, F.; Kwiatkowski, D.J.; Scoazec, J.Y.; Martignoni, G.; Pende, M. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med., 2014, 211(11), 2249-2263.
[http://dx.doi.org/10.1084/jem.20140341] [PMID: 25288394]
[60]
Hansen, C.G.; Ng, Y.L.D.; Lam, W.L.M.; Plouffe, S.W.; Guan, K.L. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res., 2015, 25(12), 1299-1313.
[http://dx.doi.org/10.1038/cr.2015.140] [PMID: 26611634]
[61]
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410.
[http://dx.doi.org/10.1038/nrc3262] [PMID: 22534666]
[62]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[63]
Yoshida, G.J. Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res., 2015, 34, 111.
[http://dx.doi.org/10.1186/s13046-015-0221-y] [PMID: 26445347]
[64]
Rabanal-Ruiz, Y. Otten, E.G.; Korolchuk, V.I. mTORC1 as the main gateway to autophagy. Essays Biochem., 2017, 61(6), 565-584.
[http://dx.doi.org/10.1042/EBC20170027] [PMID: 29233869]
[65]
Imai, H.; Kaira, K.; Oriuchi, N.; Shimizu, K.; Tominaga, H.; Yanagitani, N.; Sunaga, N.; Ishizuka, T.; Nagamori, S.; Promchan, K.; Nakajima, T.; Yamamoto, N.; Mori, M.; Kanai, Y. Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res., 2010, 30(12), 4819-4828.
[PMID: 21187458]
[66]
Rajasinghe, L.D.; Hutchings, M.; Gupta, S.V. Delta-tocotrienol modulates glutamine dependence by inhibiting ASCT2 and LAT1 transporters in non-small cell lung cancer (NSCLC) cells: A metabolomic approach. Metabolites, 2019, 9(3), 9.
[http://dx.doi.org/10.3390/metabo9030050] [PMID: 30871192]
[67]
Nakanishi, K.; Matsuo, H.; Kanai, Y.; Endou, H.; Hiroi, S.; Tominaga, S.; Mukai, M.; Ikeda, E.; Ozeki, Y.; Aida, S.; Kawai, T. LAT1 expression in normal lung and in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Virchows Arch., 2006, 448(2), 142-150.
[http://dx.doi.org/10.1007/s00428-005-0063-7] [PMID: 16175382]
[68]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Kawashima, O.; Iijima, H.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. Expression of L-type amino acid transporter 1 (LAT1) in neuroendocrine tumors of the lung. Pathol. Res. Pract., 2008, 204(8), 553-561.
[http://dx.doi.org/10.1016/j.prp.2008.02.003] [PMID: 18440724]
[69]
Le Vee, M.; Jouan, E.; Lecureur, V.; Fardel, O. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2016, 290, 74-85.
[http://dx.doi.org/10.1016/j.taap.2015.11.014] [PMID: 26621329]
[70]
Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol., 2006, 18(5), 516-523.
[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[71]
Nawashiro, H.; Otani, N.; Shinomiya, N.; Fukui, S.; Ooigawa, H.; Shima, K.; Matsuo, H.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer, 2006, 119(3), 484-492.
[http://dx.doi.org/10.1002/ijc.21866] [PMID: 16496379]
[72]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Tanaka, S.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci., 2008, 99(12), 2380-2386.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00969.x] [PMID: 19018776]
[73]
Takeuchi, K.; Ogata, S.; Nakanishi, K.; Ozeki, Y.; Hiroi, S.; Tominaga, S.; Aida, S.; Matsuo, H.; Sakata, T.; Kawai, T. LAT1 expression in non-small-cell lung carcinomas: Analyses by semiquantitative reverse transcription-PCR (237 cases) and immunohistochemistry (295 cases). Lung Cancer, 2010, 68(1), 58-65.
[http://dx.doi.org/10.1016/j.lungcan.2009.05.020] [PMID: 19559497]
[74]
Dann, S.G.; Ryskin, M.; Barsotti, A.M.; Golas, J.; Shi, C.; Miranda, M.; Hosselet, C.; Lemon, L.; Lucas, J.; Karnoub, M.; Wang, F.; Myers, J.S.; Garza, S.J.; Follettie, M.T.; Geles, K.G.; Klippel, A.; Rollins, R.A.; Fantin, V.R. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2. EMBO J., 2015, 34(13), 1773-1785.
[http://dx.doi.org/10.15252/embj.201488166] [PMID: 25979827]
[75]
Yazawa, T.; Shimizu, K.; Kaira, K.; Nagashima, T.; Ohtaki, Y.; Atsumi, J.; Obayashi, K.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I. Clinical significance of coexpression of L-type amino acid transporter 1 (LAT1) and ASC amino acid transporter 2 (ASCT2) in lung adenocarcinoma. Am. J. Transl. Res., 2015, 7(6), 1126-1139.
[PMID: 26279756]
[76]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in early stage squamous cell carcinoma of the lung. Cancer Sci., 2009, 100(2), 248-254.
[http://dx.doi.org/10.1111/j.1349-7006.2008.01029.x] [PMID: 19068093]
[77]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Kawashima, O.; Kamide, Y.; Ishizuka, T.; Kanai, Y.; Nakajima, T.; Mori, M. Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in surgically resectable stage III non-small cell lung cancer. Exp. Ther. Med., 2010, 1(5), 799-808.
[http://dx.doi.org/10.3892/etm.2010.117] [PMID: 22993604]
[78]
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009, 136(3), 521-534.
[http://dx.doi.org/10.1016/j.cell.2008.11.044] [PMID: 19203585]
[79]
Liang, Z.; Cho, H.T.; Williams, L.; Zhu, A.; Liang, K.; Huang, K.; Wu, H.; Jiang, C.; Hong, S.; Crowe, R.; Goodman, M.M.; Shim, H. Potential biomarker of L-type amino acid transporter 1 in breast cancer progression. Nucl. Med. Mol. Imaging, 2011, 45(2), 93-102.
[http://dx.doi.org/10.1007/s13139-010-0068-2] [PMID: 24899987]
[80]
Matsuda, N.; Suzuki, T.; Tanaka, K.; Nakano, A. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J. Cell Sci., 2001, 114(Pt 10), 1949-1957.
[PMID: 11329381]
[81]
Jeon, Y.J.; Khelifa, S.; Ratnikov, B.; Scott, D.A.; Feng, Y.; Parisi, F.; Ruller, C.; Lau, E.; Kim, H.; Brill, L.M.; Jiang, T.; Rimm, D.L.; Cardiff, R.D.; Mills, G.B.; Smith, J.W.; Osterman, A.L.; Kluger, Y.; Ronai, Z.A. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell, 2015, 27(3), 354-369.
[http://dx.doi.org/10.1016/j.ccell.2015.02.006] [PMID: 25759021]
[82]
Wang, M.; Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 2014, 14(9), 581-597.
[http://dx.doi.org/10.1038/nrc3800] [PMID: 25145482]
[83]
Moses, M.A.; Neckers, L. The GLU that holds cancer together: targeting GLUtamine transporters in breast cancer. Cancer Cell, 2015, 27(3), 317-319.
[http://dx.doi.org/10.1016/j.ccell.2015.02.010] [PMID: 25759015]
[84]
Shennan, D.B.; Thomson, J. Inhibition of system L (LAT1/CD98hc) reduces the growth of cultured human breast cancer cells. Oncol. Rep., 2008, 20(4), 885-889.
[PMID: 18813831]
[85]
van Geldermalsen, M.; Quek, L.E.; Turner, N.; Freidman, N.; Pang, A.; Guan, Y.F.; Krycer, J.R.; Ryan, R.; Wang, Q.; Holst, J. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer, 2018, 18(1), 689.
[http://dx.doi.org/10.1186/s12885-018-4599-8] [PMID: 29940911]
[86]
Tomblin, J.K.; Arthur, S.; Primerano, D.A.; Chaudhry, A.R.; Fan, J.; Denvir, J.; Salisbury, T.B. Aryl hydrocarbon receptor (AHR) regulation of L-type amino acid transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells. Biochem. Pharmacol., 2016, 106, 94-103.
[http://dx.doi.org/10.1016/j.bcp.2016.02.020] [PMID: 26944194]
[87]
Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T. Dunlop, I.E.; Porter, A.E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(45), 39259-39270.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[88]
Gonzalez-Carter, D.A.; Ong, Z.Y.; McGilvery, C.M. Dunlop, I.E.; Dexter, D.T.; Porter, A.E. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine (Lond.), 2019, 15(1), 1-11.
[http://dx.doi.org/10.1016/j.nano.2018.08.011] [PMID: 30189294]
[89]
Li, L.; Di, X.; Wu, M.; Sun, Z.; Zhong, L.; Wang, Y.; Fu, Q.; Kan, Q.; Sun, J.; He, Z. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy. Nanomedicine (Lond.), 2017, 13(3), 987-998.
[http://dx.doi.org/10.1016/j.nano.2016.11.012] [PMID: 27890657]
[90]
Li, L.; Di, X.; Zhang, S.; Kan, Q.; Liu, H.; Lu, T.; Wang, Y.; Fu, Q.; Sun, J.; He, Z. Large amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma targeting. Colloids Surf. B Biointerfaces, 2016, 141, 260-267.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.041] [PMID: 26859117]
[91]
El Ansari, R.; Craze, M.L.; Miligy, I.; Diez-Rodriguez, M.; Nolan, C.C.; Ellis, I.O.; Rakha, E.A.; Green, A.R. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res., 2018, 20(1), 21.
[http://dx.doi.org/10.1186/s13058-018-0946-6] [PMID: 29566741]
[92]
Furuya, M.; Horiguchi, J.; Nakajima, H.; Kanai, Y.; Oyama, T. Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci., 2012, 103(2), 382-389.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02151.x] [PMID: 22077314]
[93]
Xu, M.; Sakamoto, S.; Matsushima, J.; Kimura, T.; Ueda, T.; Mizokami, A.; Kanai, Y.; Ichikawa, T. Up-regulation of LAT1 during antiandrogen therapy contributes to progression in prostate cancer cells. J. Urol., 2016, 195(5), 1588-1597.
[http://dx.doi.org/10.1016/j.juro.2015.11.071] [PMID: 26682754]
[94]
Segawa, A.; Nagamori, S.; Kanai, Y.; Masawa, N.; Oyama, T. L-type amino acid transporter 1 expression is highly correlated with Gleason score in prostate cancer. Mol. Clin. Oncol., 2013, 1(2), 274-280.
[http://dx.doi.org/10.3892/mco.2012.54] [PMID: 24649160]
[95]
Wang, Q.; Bailey, C.G.; Ng, C.; Tiffen, J.; Thoeng, A.; Minhas, V.; Lehman, M.L.; Hendy, S.C.; Buchanan, G.; Nelson, C.C.; Rasko, J.E.; Holst, J. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res., 2011, 71(24), 7525-7536.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1821] [PMID: 22007000]
[96]
Xu, Y.; Chen, S.Y.; Ross, K.N.; Balk, S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res., 2006, 66(15), 7783-7792.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4472] [PMID: 16885382]
[97]
Takeda, D.Y.; Spisák, S.; Seo, J.H.; Bell, C.; O’Connor, E.; Korthauer, K.; Ribli, D.; Csabai, I.; Solymosi, N.; Szállási, Z.; Stillman, D.R.; Cejas, P.; Qiu, X.; Long, H.W.; Tisza, V.; Nuzzo, P.V.; Rohanizadegan, M.; Pomerantz, M.M.; Hahn, W.C.; Freedman, M.L. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell, 2018, 174(2), 422-432.e13.
[http://dx.doi.org/10.1016/j.cell.2018.05.037] [PMID: 29909987]
[98]
Cai, C.; He, H.H.; Chen, S.; Coleman, I.; Wang, H.; Fang, Z.; Chen, S.; Nelson, P.S.; Liu, X.S.; Brown, M.; Balk, S.P. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 2011, 20(4), 457-471.
[http://dx.doi.org/10.1016/j.ccr.2011.09.001] [PMID: 22014572]
[99]
Okudaira, H.; Shikano, N.; Nishii, R. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutane-carboxylic acid in human prostate cancer. J. Nucl. Med., 2011, 52, 822-829.
[100]
Chuaqui, R.F.; Englert, C.R.; Strup, S.E.; Vocke, C.D.; Zhuang, Z.; Duray, P.H.; Bostwick, D.G.; Linehan, W.M.; Liotta, L.A.; Emmert-Buck, M.R. Identification of a novel transcript up-regulated in a clinically aggressive prostate carcinoma. Urology, 1997, 50(2), 302-307.
[http://dx.doi.org/10.1016/S0090-4295(97)00194-5] [PMID: 9255310]
[101]
Sakata, T.; Ferdous, G.; Tsuruta, T.; Satoh, T.; Baba, S.; Muto, T.; Ueno, A.; Kanai, Y.; Endou, H.; Okayasu, I. L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int., 2009, 59(1), 7-18.
[http://dx.doi.org/10.1111/j.1440-1827.2008.02319.x] [PMID: 19121087]
[102]
Choi, D.W.; Kim, D.K.; Kanai, Y.; Wempe, M.F.; Endou, H.; Kim, J.K. JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells. Korean J. Physiol. Pharmacol., 2017, 21(6), 599-607.
[http://dx.doi.org/10.4196/kjpp.2017.21.6.599] [PMID: 29200902]
[103]
Häfliger, P.; Graff, J.; Rubin, M.; Stooss, A.; Dettmer, M.S.; Altmann, K.H.; Gertsch, J.; Charles, R.P. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J. Exp. Clin. Cancer Res., 2018, 37(1), 234.
[http://dx.doi.org/10.1186/s13046-018-0907-z] [PMID: 30241549]
[104]
Oda, K.; Hosoda, N.; Endo, H.; Saito, K.; Tsujihara, K.; Yamamura, M.; Sakata, T.; Anzai, N.; Wempe, M.F.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Sci., 2010, 101(1), 173-179.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01386.x] [PMID: 19900191]
[105]
Muto, Y.; Furihata, T.; Kaneko, M.; Higuchi, K.; Okunushi, K.; Morio, H.; Reien, Y.; Uesato, M.; Matsubara, H.; Anzai, N. Different response profiles of gastrointestinal cancer cells to an l-type amino acid transporter inhibitor, JPH203. Anticancer Res., 2019, 39(1), 159-165.
[http://dx.doi.org/10.21873/anticanres.13092] [PMID: 30591453]
[106]
Howlader, N.; Cronin, K.A.; Kurian, A.W.; Andridge, R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol. Biomarkers Prev., 2018, 27(6), 619-626.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0627] [PMID: 29593010]
[107]
Altan, B.; Kaira, K.; Watanabe, A.; Kubo, N.; Bao, P.; Dolgormaa, G.; Bilguun, E.O.; Araki, K.; Kanai, Y.; Yokobori, T.; Oyama, T.; Nishiyama, M.; Kuwano, H.; Shirabe, K. Relationship between LAT1 expression and resistance to chemotherapy in pancreatic ductal adenocarcinoma. Cancer Chemother. Pharmacol., 2018, 81(1), 141-153.
[http://dx.doi.org/10.1007/s00280-017-3477-4] [PMID: 29149426]
[108]
Kaira, K.; Sunose, Y.; Arakawa, K.; Ogawa, T.; Sunaga, N.; Shimizu, K.; Tominaga, H.; Oriuchi, N.; Itoh, H.; Nagamori, S.; Kanai, Y.; Segawa, A.; Furuya, M.; Mori, M.; Oyama, T.; Takeyoshi, I. Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer. Br. J. Cancer, 2012, 107(4), 632-638.
[http://dx.doi.org/10.1038/bjc.2012.310] [PMID: 22805328]
[109]
Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; Gwyther, S.G. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst., 2000, 92(3), 205-216.
[http://dx.doi.org/10.1093/jnci/92.3.205] [PMID: 10655437]
[110]
Kaira, K.; Sunose, Y.; Arakawa, K.; Sunaga, N.; Shimizu, K.; Tominaga, H.; Oriuchi, N.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I. Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology, 2015, 66(2), 234-243.
[http://dx.doi.org/10.1111/his.12464] [PMID: 24845232]
[111]
Kanai, Y.; Segawa, H.; Miyamoto, Ki.; Uchino, H.; Takeda, E.; Endou, H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem., 1998, 273(37), 23629-23632.
[http://dx.doi.org/10.1074/jbc.273.37.23629] [PMID: 9726963]
[112]
Hayashi, K.; Jutabha, P.; Endou, H.; Anzai, N. c-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells. Oncol. Rep., 2012, 28(3), 862-866.
[http://dx.doi.org/10.3892/or.2012.1878] [PMID: 22736142]
[113]
Hayase, S.; Kumamoto, K.; Saito, K.; Kofunato, Y.; Sato, Y.; Okayama, H.; Miyamoto, K.; Ohki, S.; Takenoshita, S. L-type amino acid transporter 1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncol. Lett., 2017, 14(6), 7410-7416.
[http://dx.doi.org/10.3892/ol.2017.7148] [PMID: 29344181]
[114]
Kim, L.C.; Cook, R.S.; Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 2017, 36(16), 2191-2201.
[http://dx.doi.org/10.1038/onc.2016.363] [PMID: 27748764]
[115]
Ebara, T.; Kaira, K.; Saito, J.; Shioya, M.; Asao, T.; Takahashi, T.; Sakurai, H.; Kanai, Y.; Kuwano, H.; Nakano, T. L-type amino-acid transporter 1 expression predicts the response to preoperative hyperthermo-chemoradiotherapy for advanced rectal cancer. Anticancer Res., 2010, 30(10), 4223-4227.
[PMID: 21036745]
[116]
Ogihara, K.; Naya, Y.; Sato, R.; Onda, K.; Ochiai, H. Analysis of L-type amino acid transporter in canine hepatocellular carcinoma. J. Vet. Med. Sci., 2015, 77(5), 527-534.
[http://dx.doi.org/10.1292/jvms.14-0392] [PMID: 25649314]
[117]
Bartlett, D.L.; DiBisceglie, A.M.; Dawson, L.A. Cancer of the liver.Cancer: Principles and Practice of Oncology; (9th ed. ). , 2011. 997-1018.
[118]
Li, J.; Qiang, J.; Chen, S.F.; Wang, X.; Fu, J.; Chen, Y. The impact of L-type amino acid transporter 1 (LAT1) in human hepatocellular carcinoma. Tumour Biol., 2013, 34(5), 2977-2981.
[http://dx.doi.org/10.1007/s13277-013-0861-5] [PMID: 23696029]
[119]
Namikawa, M.; Kakizaki, S.; Kaira, K.; Tojima, H.; Yamazaki, Y.; Horiguchi, N.; Sato, K.; Oriuchi, N.; Tominaga, H.; Sunose, Y.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I.; Yamada, M. Expression of amino acid transporters (LAT1, ASCT2 and xCT) as clinical significance in hepatocellular carcinoma. Hepatol. Res., 2015, 45(9), 1014-1022.
[http://dx.doi.org/10.1111/hepr.12431] [PMID: 25297701]
[120]
Wolf, D.A.; Wang, S.; Panzica, M.A.; Bassily, N.H.; Thompson, N.L. Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: Homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products. Cancer Res., 1996, 56(21), 5012-5022.
[PMID: 8895758]
[121]
Bröer, A.; Rahimi, F.; Bröer, S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J. Biol. Chem., 2016, 291(25), 13194-13205.
[http://dx.doi.org/10.1074/jbc.M115.700534] [PMID: 27129276]
[122]
Russo, F.; Linsalata, M.; Orlando, A. Probiotics against neoplastic transformation of gastric mucosa: effects on cell proliferation and polyamine metabolism. World J. Gastroenterol., 2014, 20(37), 13258-13272.
[http://dx.doi.org/10.3748/wjg.v20.i37.13258] [PMID: 25309063]
[123]
Ding, K.; Tan, S.; Huang, X.; Wang, X.; Li, X.; Fan, R.; Zhu, Y.; Lobie, P.E.; Wang, W.; Wu, Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J. Biol. Chem., 2018, 293(11), 3949-3964.
[http://dx.doi.org/10.1074/jbc.RA117.001103] [PMID: 29367342]
[124]
Wang, J.; Chen, X.; Li, P.; Su, L.; Yu, B.; Cai, Q.; Li, J.; Yu, Y.; Liu, B.; Zhu, Z. CRKL promotes cell proliferation in gastric cancer and is negatively regulated by miR-126. Chem. Biol. Interact., 2013, 206(2), 230-238.
[http://dx.doi.org/10.1016/j.cbi.2013.09.003] [PMID: 24055140]
[125]
Wang, J.; Fei, X.; Wu, W.; Chen, X.; Su, L.; Zhu, Z.; Zhou, Y. SLC7A5 Functions as a downstream target modulated by CRKL in metastasis process of gastric cancer SGC-7901 cells. PLoS One, 2016, 11(11)e0166147
[http://dx.doi.org/10.1371/journal.pone.0166147] [PMID: 27846244]
[126]
Ichinoe, M.; Mikami, T.; Yoshida, T.; Igawa, I.; Tsuruta, T.; Nakada, N.; Anzai, N.; Suzuki, Y.; Endou, H.; Okayasu, I. High expression of L-type amino-acid transporter 1 (LAT1) in gastric carcinomas: Comparison with non-cancerous lesions. Pathol. Int., 2011, 61(5), 281-289.
[http://dx.doi.org/10.1111/j.1440-1827.2011.02650.x] [PMID: 21501294]
[127]
Yanagisawa, N.; Hana, K.; Nakada, N.; Ichinoe, M.; Koizumi, W.; Endou, H.; Okayasu, I.; Murakumo, Y. High expression of L-type amino acid transporter 1 as a prognostic marker in bile duct adenocarcinomas. Cancer Med., 2014, 3(5), 1246-1255.
[http://dx.doi.org/10.1002/cam4.272] [PMID: 24890221]
[128]
Kaira, K.; Kawashima, O.; Endoh, H.; Imaizumi, K.; Goto, Y.; Kamiyoshihara, M.; Sugano, M.; Yamamoto, R.; Osaki, T.; Tanaka, S.; Fujita, A.; Imai, H.; Kogure, Y.; Seki, Y.; Shimizu, K.; Mogi, A.; Shitara, Y.; Oyama, T.; Kanai, Y.; Asao, T. Expression of amino acid transporter (LAT1 and 4F2hc) in pulmonary pleomorphic carcinoma. Hum. Pathol., 2019, 84, 142-149.
[http://dx.doi.org/10.1016/j.humpath.2018.09.020] [PMID: 30300664]
[129]
Imai, H.; Kaira, K.; Oriuchi, N.; Yanagitani, N.; Sunaga, N.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. L-type amino acid transporter 1 expression is a prognostic marker in patients with surgically resected stage I non-small cell lung cancer. Histopathology, 2009, 54(7), 804-813.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03300.x] [PMID: 19635099]
[130]
Kaira, K.; Oriuchi, N.; Takahashi, T.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Kanai, Y.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. LAT1 expression is closely associated with hypoxic markers and mTOR in resected non-small cell lung cancer. Am. J. Transl. Res., 2011, 3(5), 468-478.
[PMID: 22046488]
[131]
Kaira, K.; Takahashi, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Oriuchi, N.; Kanai, Y.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. Relationship between LAT1 expression and response to platinum-based chemotherapy in non-small cell lung cancer patients with postoperative recurrence. Anticancer Res., 2011, 31(11), 3775-3782.
[PMID: 22110199]
[132]
Halldorsson, S.; Rohatgi, N.; Magnusdottir, M.; Choudhary, K.S.; Gudjonsson, T.; Knutsen, E.; Barkovskaya, A.; Hilmarsdottir, B.; Perander, M.; Mælandsmo, G.M.; Gudmundsson, S.; Rolfsson, Ó. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett., 2017, 396, 117-129.
[http://dx.doi.org/10.1016/j.canlet.2017.03.019] [PMID: 28323032]
[133]
Barollo, S.; Bertazza, L.; Watutantrige-Fernando, S.; Censi, S.; Cavedon, E.; Galuppini, F.; Pennelli, G.; Fassina, A.; Citton, M.; Rubin, B.; Pezzani, R.; Benna, C.; Opocher, G.; Iacobone, M.; Mian, C. Overexpression of L-Type amino acid transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors. PLoS One, 2016, 11(5)e0156044
[http://dx.doi.org/10.1371/journal.pone.0156044] [PMID: 27224648]
[134]
Yothaisong, S.; Namwat, N.; Yongvanit, P.; Khuntikeo, N.; Puapairoj, A.; Jutabha, P.; Anzai, N.; Tassaneeyakul, W.; Tangsucharit, P.; Loilome, W. Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitol. Int., 2017, 66(4), 471-478.
[http://dx.doi.org/10.1016/j.parint.2015.11.011] [PMID: 26657242]
[135]
Ichinoe, M.; Yanagisawa, N.; Mikami, T.; Hana, K.; Nakada, N.; Endou, H.; Okayasu, I.; Murakumo, Y. L-Type amino acid transporter 1 (LAT1) expression in lymph node metastasis of gastric carcinoma: Its correlation with size of metastatic lesion and Ki-67 labeling. Pathol. Res. Pract., 2015, 211(7), 533-538.
[http://dx.doi.org/10.1016/j.prp.2015.03.007] [PMID: 25908107]
[136]
Betsunoh, H.; Fukuda, T.; Anzai, N.; Nishihara, D.; Mizuno, T.; Yuki, H.; Masuda, A.; Yamaguchi, Y.; Abe, H.; Yashi, M.; Fukabori, Y.; Yoshida, K.; Kamai, T. Increased expression of system large amino acid transporter (LAT)-1 mRNA is associated with invasive potential and unfavorable prognosis of human clear cell renal cell carcinoma. BMC Cancer, 2013, 13, 509.
[http://dx.doi.org/10.1186/1471-2407-13-509] [PMID: 24168110]
[137]
Nakanishi, K.; Ogata, S.; Matsuo, H.; Kanai, Y.; Endou, H.; Hiroi, S.; Tominaga, S.; Aida, S.; Kasamatsu, H.; Kawai, T. Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract. Virchows Arch., 2007, 451(3), 681-690.
[http://dx.doi.org/10.1007/s00428-007-0457-9] [PMID: 17622555]
[138]
Elorza, A.; Soro-Arnáiz, I.; Meléndez-Rodríguez, F.; Rodríguez-Vaello, V.; Marsboom, G.; de Cárcer, G.; Acosta-Iborra, B.; Albacete-Albacete, L.; Ordóñez, A.; Serrano-Oviedo, L.; Giménez-Bachs, J.M.; Vara-Vega, A.; Salinas, A.; Sánchez-Prieto, R.; Martín del Río, R.; Sánchez-Madrid, F.; Malumbres, M.; Landázuri, M.O.; Aragonés, J. HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol. Cell, 2012, 48(5), 681-691.
[http://dx.doi.org/10.1016/j.molcel.2012.09.017] [PMID: 23103253]
[139]
Dang, D.T.; Chun, S.Y.; Burkitt, K.; Abe, M.; Chen, S.; Havre, P.; Mabjeesh, N.J.; Heath, E.I.; Vogelzang, N.J.; Cruz-Correa, M.; Blayney, D.W.; Ensminger, W.D.; St Croix, B.; Dang, N.H.; Dang, L.H. Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition. Cancer Res., 2008, 68(6), 1872-1880.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1589] [PMID: 18339868]
[140]
Ishiwata, K. 4-Borono-2-18F-fluoro-L-phenylalanine PET for boron neutron capture therapy-oriented diagnosis: Overview of a quarter century of research. Ann. Nucl. Med., 2019, 33(4), 223-236.
[http://dx.doi.org/10.1007/s12149-019-01347-8] [PMID: 30820862]
[141]
Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Furuse, M.; Kuroiwa, T.; Suzuki, M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat. Oncol., 2014, 9, 6.
[http://dx.doi.org/10.1186/1748-717X-9-6] [PMID: 24387301]
[142]
Watabe, T.; Ikeda, H.; Nagamori, S.; Wiriyasermkul, P.; Tanaka, Y.; Naka, S.; Kanai, Y.; Hagiwara, K.; Aoki, M.; Shimosegawa, E.; Kanai, Y.; Hatazawa, J. 18F-FBPA as a tumor-specific probe of L-type amino acid transporter 1 (LAT1): A comparison study with 18F-FDG and 11C-Methionine PET. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(2), 321-331.
[http://dx.doi.org/10.1007/s00259-016-3487-1] [PMID: 27550420]
[143]
Miyashita, M.; Miyatake, S.; Imahori, Y.; Yokoyama, K.; Kawabata, S.; Kajimoto, Y.; Shibata, M.A.; Otsuki, Y.; Kirihata, M.; Ono, K.; Kuroiwa, T. Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J. Neurooncol., 2008, 89(2), 239-246.
[http://dx.doi.org/10.1007/s11060-008-9621-6] [PMID: 18566749]
[144]
Miyatake, S.; Kawabata, S.; Nonoguchi, N.; Yokoyama, K.; Kuroiwa, T.; Matsui, H.; Ono, K. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro-oncol., 2009, 11(4), 430-436.
[http://dx.doi.org/10.1215/15228517-2008-107] [PMID: 19289492]
[145]
Morita, T.; Kurihara, H.; Hiroi, K.; Honda, N.; Igaki, H.; Hatazawa, J.; Arai, Y.; Itami, J. Dynamic changes in 18F-borono-L-phenylalanine uptake in unresectable, advanced, or recurrent squamous cell carcinoma of the head and neck and malignant melanoma during boron neutron capture therapy patient selection. Radiat. Oncol., 2018, 13(1), 4.
[http://dx.doi.org/10.1186/s13014-017-0949-y] [PMID: 29325590]
[146]
Cormerais, Y.; Giuliano, S.; LeFloch, R.; Front, B.; Durivault, J.; Tambutté, E.; Massard, P.A.; de la Ballina, L.R.; Endou, H.; Wempe, M.F.; Palacin, M.; Parks, S.K.; Pouyssegur, J. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res., 2016, 76(15), 4481-4492.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3376] [PMID: 27302165]
[147]
Scalise, M.; Galluccio, M.; Console, L.; Pochini, L.; Indiveri, C. The human SLC7A5 (LAT1): The intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem., 2018, 6, 243.
[http://dx.doi.org/10.3389/fchem.2018.00243] [PMID: 29988369]
[148]
Ylikangas, H.; Malmioja, K.; Peura, L.; Gynther, M.; Nwachukwu, E.O.; Leppänen, J.; Laine, K.; Rautio, J.; Lahtela-Kakkonen, M.; Huttunen, K.M.; Poso, A. Quantitative insight into the design of compounds recognized by the L-type amino acid transporter 1 (LAT1). ChemMedChem, 2014, 9(12), 2699-2707.
[http://dx.doi.org/10.1002/cmdc.201402281] [PMID: 25205473]
[149]
Huttunen, K.M.; Gynther, M.; Huttunen, J.; Puris, E.; Spicer, J.A.; Denny, W.A. A selective and slowly reversible inhibitor of l-type amino acid transporter 1 (LAT1) potentiates antiproliferative drug efficacy in cancer cells. J. Med. Chem., 2016, 59(12), 5740-5751.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00190] [PMID: 27253989]
[150]
Ylikangas, H.; Peura, L.; Malmioja, K.; Leppänen, J.; Laine, K.; Poso, A.; Lahtela-Kakkonen, M.; Rautio, J. Structure-activity relationship study of compounds binding to large amino acid transporter 1 (LAT1) based on pharmacophore modeling and in situ rat brain perfusion. Eur. J. Pharm. Sci., 2013, 48(3), 523-531.
[http://dx.doi.org/10.1016/j.ejps.2012.11.014] [PMID: 23228412]
[151]
Napolitano, L.; Scalise, M.; Koyioni, M.; Koutentis, P.; Catto, M.; Eberini, I.; Parravicini, C.; Palazzolo, L.; Pisani, L.; Galluccio, M.; Console, L.; Carotti, A.; Indiveri, C. Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs. Biochem. Pharmacol., 2017, 143, 39-52.
[http://dx.doi.org/10.1016/j.bcp.2017.07.006] [PMID: 28709952]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy