Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

在阿尔茨海默氏病小鼠模型的前期,进展期和病理期海马CA1区的蛋白质组学分析

卷 16, 期 7, 2019

页: [613 - 621] 页: 9

弟呕挨: 10.2174/1567205016666190730155926

价格: $65

摘要

背景:海马结构的CA1子区域是AD中受影响最严重的结构之一,但对该区域细胞外环境中的蛋白质组改变知之甚少。 目的:在这项研究中,我们旨在确定整个AD小鼠模型的病理前,进展和病理阶段的蛋白表达变化。 方法:通过体内脑内推拉灌注法从转基因的5XFAD小鼠中收集CA1区灌洗液,分别于3、6和12个月龄时分离其非转基因同窝仔。 进行莫里斯水迷宫测试和免疫组织化学A染色,以确定该小鼠模型中疾病的阶段。 通过无标记猎枪蛋白质组学分析来分析蛋白质表达差异。 结果:在分别从3、6和12个月大的小鼠CA1区获得的样品中,共鉴定出251、213和238种蛋白质。 在这些蛋白中,有68、41和33个蛋白具有统计学意义。 基于组内独特和常见蛋白质的途径分析显示,在AD的不同阶段,几种途径均失调。 在疾病的病理前和进展阶段,葡萄糖和脂质代谢的变化分别通过降低SOD水平和损害神经元完整性而导致ROS产生失衡。 结论:我们得出的结论是,CA1区海马变性的蛋白质组学分析可能有助于识别与阿尔茨海默病相关的早期以及进展性变化。

关键词: 阿尔茨海默病,CA1,蛋白质组学,5 XFAD,Aβ斑块,大脑皮层。

[1]
Morishima-Kawashima M, Ihara Y. Alzheimer’s disease: beta-Amyloid protein and tau. J Neurosci Res 70(3): 392-401. (2002)
[http://dx.doi.org/10.1002/jnr.10355] [PMID: 12391602]
[2]
Teter B, Ashford JW. Neuroplasticity in Alzheimer’s disease. J Neurosci Res 70(3): 402-37. (2002)
[http://dx.doi.org/10.1002/jnr.10441] [PMID: 12391603]
[3]
Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci 924: 42-52(2000).http://www.ncbi.nlm.nih.gov/pubmed/11193801
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05559.x] [PMID: 11193801]
[4]
Walsh TJ, Opello KD. Neuroplasticity, the aging brain, and Alzheimer’s disease. Neurotoxicology 13(1): 101-110(1992).http://www.ncbi.nlm.nih.gov/pubmed/1508410
[PMID: 1508410]
[5]
Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5): 456-67. (2004)
[http://dx.doi.org/10.1016/j.jocn.2003.12.007] [PMID: 15177383]
[6]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4): 239-259(1991).http://www.ncbi.nlm.nih.gov/pubmed/1759558
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[7]
Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271-278(1995).Available:http://www.ncbi.nlm.nih.gov/pubmed/7566337
[http://dx.doi.org/10.1016/0197-4580(95)00021-6]
[8]
Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2): 305-315(2003). Available:http://www.ncbi.nlm.nih.gov/pubmed/12718863
[http://dx.doi.org/10.1016/S0896-6273(03)00165-X] [PMID: 12718863]
[9]
O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108(2): 311-(2001).Available:http://www.ncbi.nlm.nih.gov/pubmed/11381832
[http://dx.doi.org/10.1037/0033-295X.108.2.311] [PMID: 11381832]
[10]
Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain 128(Pt 4): 773-87. (2005)
[http://dx.doi.org/10.1093/brain/awh400] [PMID: 15705615]
[11]
Schultz C, Engelhardt M. Anatomy of the hippocampal formation. Front Neurol Neurosci 34: 6-17. (2014)
[http://dx.doi.org/10.1159/000360925] [PMID: 24777126]
[12]
Reed JM, Squire LR. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav Neurosci 111(4): 667-675(1997). Available: http://www.ncbi.nlm.nih.gov/pubmed/9267644
[http://dx.doi.org/10.1037/0735-7044.111.4.667] [PMID: 9267644]
[13]
Bäckman L, Small BJ, Fratiglioni L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 124(Pt 1): 96-102(2001). Available: http://www.ncbi.nlm.nih.gov/pubmed/11133790
[http://dx.doi.org/10.1093/brain/124.1.96] [PMID: 11133790]
[14]
Buckmaster CA, Eichenbaum H, Amaral DG, Suzuki WA, Rapp PR. Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J Neurosci 24(44): 9811-25. (2004)
[http://dx.doi.org/10.1523/JNEUROSCI.1532-04.2004] [PMID: 15525766]
[15]
Flood DG, Coleman PD. Hippocampal plasticity in normal aging and decreased plasticity in Alzheimer’s disease.Prog Brain Res 83: 435 (1990). Available: http://www.ncbi.nlm.nih.gov/pubmed/2203107
[16]
Simonian NA, Hyman BT. Functional alterations in neural circuits in Alzheimer’s disease. Neurobiol Aging 16: 305-309(1995). Available: http://www.ncbi.nlm.nih.gov/pubmed/7566339
[http://dx.doi.org/10.1016/0197-4580(95)00034-C]
[17]
Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, et al. Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67(6): 578-89. (2008)
[http://dx.doi.org/10.1097/NEN.0b013e3181772794] [PMID: 18520776]
[18]
Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18): 1501-8. (2007)
[http://dx.doi.org/10.1212/01.wnl.0000260698.46517.8f] [PMID: 17470753]
[19]
Klein JB, Gozal D, Pierce WM, Thongboonkerd V, Scherzer JA. Guosz, et al. Proteomic identification of a novel protein regulated in CA1 and CA3 hippocampal regions during intermittent hypoxia. Respir Physiol Neurobiol 136(2-3): 91-103.(2003). Available: http://www.ncbi.nlm.nih.gov/ pubmed/12853002
[http://dx.doi.org/10.1016/S1569-9048(03)00074-0] [PMID: 12853002]
[20]
Corti V, Sanchez-Ruiz Y, Piccoli G, Bergamaschi A, Cannistraci CV, Pattini L, et al. Protein fingerprints of cultured CA3-CA1 hippocampal neurons: comparative analysis of the distribution of synaptosomal and cytosolic proteins. BMC Neurosci 9: 36. (2008)
[http://dx.doi.org/10.1186/1471-2202-9-36] [PMID: 18402664]
[21]
Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun 393(4): 806-11. (2010)
[http://dx.doi.org/10.1016/j.bbrc.2010.02.087] [PMID: 20171158]
[22]
Wang Q, Woltjer RL, Cimino PJ, Pan C, Montine KS, Zhang J, et al. Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19(7): 869-71. (2005)
[http://dx.doi.org/10.1096/fj.04-3210fje] [PMID: 15746184]
[23]
Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, et al. Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12(6): 654-68. (2016)
[http://dx.doi.org/10.1016/j.jalz.2015.11.002] [PMID: 26772638]
[24]
Schrötter A, Oberhaus A, Kolbe K, Seger S, Mastalski T, El Magraoui F, et al. LMD proteomics provides evidence for hippocampus field-specific motor protein abundance changes with relevance to Alzheimer’s disease. Biochim Biophys Acta Proteins Proteomics 1865(6): 703-14. (2017)
[http://dx.doi.org/10.1016/j.bbapap.2017.03.013] [PMID: 28377147]
[25]
Gurel B, Cansev M, Sevinc C, Kelestemur S, Ocalan B, Causir A, et al. Early Stage Alterations in CA1 Extracellular region proteins indicate dysregulation of il6 and iron homeostasis in the 5xfad alzheimer’s disease mouse model. J Alzheimers Dis 61(4): 1399-410. (2018)
[http://dx.doi.org/10.3233/JAD-170329] [PMID: 29376847]
[26]
Beker MC, Caglayan B, Yalcin E, Caglayan AB, Turkseven S, Gurel B, et al. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT. Mol Neurobiol 55(3): 2565-76. (2018)
[http://dx.doi.org/10.1007/s12035-017-0524-4] [PMID: 28421530]
[27]
Yerlikaya A, Okur E, Baykal AT, Acılan C, Boyacı I, Ulukaya E. A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line. J Proteomics 113: 315-25. (2015)
[http://dx.doi.org/10.1016/j.jprot.2014.09.010] [PMID: 25305590]
[28]
Acioglu C, Mirabelli E, Baykal AT, Ni L, Ratnayake A, Heary RF, et al. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms. Brain Behav Immun 56: 310-24. (2016)
[http://dx.doi.org/10.1016/j.bbi.2016.03.027] [PMID: 27044334]
[29]
Chang RY, Nouwens AS, Dodd PR, Etheridge N. The synaptic proteome in Alzheimer’s disease. Alzheimers Dement 9(5): 499-511. (2013)
[http://dx.doi.org/10.1016/j.jalz.2012.04.009] [PMID: 23154051]
[30]
Bros P, Delatour V, Vialaret J, Lalere B, Barthelemy N, Gabelle A, et al. Quantitative detection of amyloid-β peptides by mass spectrometry: state of the art and clinical applications. Clin Chem Lab Med 53(10): 1483-93. (2015)
[http://dx.doi.org/10.1515/cclm-2014-1048] [PMID: 25719328]
[31]
Lin Y-F, Yang M-H, Yang Y-H, Chen W-C, Lu C-Y, Peng C-F, et al. Activity-dependent neuroprotector homeobox protein level in Alzheimer’s disease in Taiwanese. Genomic Med Biomarkers. Heal Sci 4: 48-50. (2012)
[http://dx.doi.org/10.1016/j.gmbhs.2012.04.004]
[32]
Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer’s disease. Behav Brain Res 289: 29-38. (2015)
[http://dx.doi.org/10.1016/j.bbr.2015.04.012] [PMID: 25896362]
[33]
Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. Neuroimage 55(1): 32-8. (2011)
[http://dx.doi.org/10.1016/j.neuroimage.2010.11.073] [PMID: 21126592]
[34]
Bourassa MW, Leskovjan AC, Tappero RV. Farquhar ER4, Colton CA5, Van Nostrand WE, et al.Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer’s disease that exhibit neurodegeneration. Biomed Spectrosc Imaging 2(2): 129-39. (2013)
[http://dx.doi.org/10.3233/BSI-130041] [PMID: 24926425]
[35]
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 135: 25-33. (2014)
[http://dx.doi.org/10.1016/j.physbeh.2014.05.041] [PMID: 24907698]
[36]
Urano T, Tohda C. Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy. Phytother Res 24(11): 1658-63. (2010)
[http://dx.doi.org/10.1002/ptr.3183] [PMID: 21031624]
[37]
Mak E, Su L, Williams GB. Watson R3, Firbank M4, Blamire A, et al Differential atrophy of hippocampal subfields: a comparative study of dementia with lewy bodies and Alzheimer disease. Am J Geriatr Psychiatry 24(2): 136-43. (2016)
[http://dx.doi.org/10.1016/j.jagp.2015.06.006] [PMID: 26324541]
[38]
George AJ, Holsinger RMD, McLean CA, Tan SS, Scott HS, Cardamone T, et al. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Aging 27(4): 614-23. (2006)
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.03.014] [PMID: 15941609]
[39]
Maki M, Matsukawa N, Yuasa H, Otsuka Y, Yamamoto T, Akatsu H, et al. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol 61(2): 176-185(2002).Available: http://www.ncbi.nlm.nih.gov/pubmed/11853019
[http://dx.doi.org/10.1093/jnen/61.2.176] [PMID: 11853019]
[40]
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545(1): 39-50. (2006)
[http://dx.doi.org/10.1016/j.ejphar.2006.06.026] [PMID: 16860790]
[41]
Feldmann RE Jr, Maurer MH, Hunzinger C, Lewicka S, Buergers HF, Kalenka A, et al. Reduction in rat phosphatidylethanolamine binding protein-1 (PEBP1) after chronic corticosterone treatment may be paralleled by cognitive impairment: a first study. Stress 11(2): 134-47. (2008)
[http://dx.doi.org/10.1080/10253890701649904] [PMID: 18311602]
[42]
Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79: 172-9. (2014)
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.018] [PMID: 24445080]
[43]
Tamura H, Fukada M, Fujikawa A, Noda M. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci Lett 399(1-2): 33-8. (2006)
[http://dx.doi.org/10.1016/j.neulet.2006.01.045] [PMID: 16513268]
[44]
Cressant A, Dubreuil V, Kong J, Kranz TM, Lazarini F, Launay JM, et al. Loss-of-function of PTPR γ and ζ, observed in sporadic schizophrenia, causes brain region-specific deregulation of monoamine levels and altered behavior in mice. Psychopharmacology (Berl) 234(4): 575-87. (2017)
[http://dx.doi.org/10.1007/s00213-016-4490-8] [PMID: 28025742]
[45]
Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, et al. Analysis of the cerebrospinal fluid proteome in alzheimer’s disease. PLoS One. Public Library Sci 11(3)e0150672 (2016)
[http://dx.doi.org/10.1371/journal.pone.0150672]
[46]
Takeuchi T, Ohtsuki G, Yoshida T, Fukaya M, Wainai T, Yamashita M, et al. Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin.Grant SGN, editor PLoS One 3.e2297 (2008).
[http://dx.doi.org/10.1371/journal.pone.0002297]
[47]
Matsuda K, Matsuda S, Gladding CM, Yuzaki M. Characterization of the δ2 glutamate receptor-binding protein delphilin: splicing variants with differential palmitoylation and an additional PDZ domain. J Biol Chem 281(35): 25577-87. (2006)
[http://dx.doi.org/10.1074/jbc.M602044200] [PMID: 16835239]
[48]
Majd S, Power JHT. Oxidative stress and decreased mitochondrial superoxide dismutase 2 and peroxiredoxins 1 and 4 based mechanism of concurrent activation of AMPK and mTOR in Alzheimer’s disease. Curr Alzheimer Res 15(8): 764-76. (2018)
[http://dx.doi.org/10.2174/1567205015666180223093020] [PMID: 29473507]
[49]
Rodrigues GP, Cozzolino SMF, Marreiro DDN, Caldas DRC, da Silva KG, de Sousa Almondes KG, et al. Mineral status and superoxide dismutase enzyme activity in Alzheimer’s disease. J Trace Elem Med Biol 44: 83-7. (2017)
[http://dx.doi.org/10.1016/j.jtemb.2017.06.005] [PMID: 28965606]
[50]
Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, et al. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer’s disease subjects. J Proteomics 74(7): 1091-103. (2011)
[http://dx.doi.org/10.1016/j.jprot.2011.03.033] [PMID: 21515431]
[51]
Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1)a006346 (2012)
[http://dx.doi.org/10.1101/cshperspect.a006346] [PMID: 22315714]
[52]
Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA. Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28(1): 147-61. (2012)
[http://dx.doi.org/10.3233/JAD-2011-110614] [PMID: 21971404]
[53]
Meadowcroft MD, Connor JR, Yang QX. Cortical iron regulation and inflammatory response in Alzheimer’s disease and APPSWE/PS1ΔE9 mice: a histological perspective. Front Neurosci 9: 255. (2015)
[http://dx.doi.org/10.3389/fnins.2015.00255] [PMID: 26257600]
[54]
Milionis HJ, Florentin M, Giannopoulos S. Metabolic syndrome and Alzheimer’s disease: a link to a vascular hypothesis? CNS Spectr 13(7): 606-613(2008).Available:http://www.ncbi.nlm.nih.gov/pubmed/18622365
[http://dx.doi.org/10.1017/S1092852900016886] [PMID: 18622365]
[55]
Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Peña V. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer’s disease? Oxid Med Cell Longev 2014497802 (2014)
[http://dx.doi.org/10.1155/2014/497802] [PMID: 24683436]
[56]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2(6): 1101-13. (2008)
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[57]
Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3): 247-68. (2005)
[http://dx.doi.org/10.3233/JAD-2005-8304] [PMID: 16340083]
[58]
Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585(1): 38-49. (2008)
[http://dx.doi.org/10.1016/j.ejphar.2008.01.050] [PMID: 18407262]
[59]
Ying M, Sui X, Zhang Y, Sun Q, Qu Z, Luo X. Identification of Novel Key Molecules involved in spatial memory impairment in triple transgenic mice of Alzheimer’s disease. Mol Neurobiol 54(5): 3843-58. (2017)
[http://dx.doi.org/10.1007/s12035-016-9959-2] [PMID: 27335030]
[60]
Wood WG, Li L, Müller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer’s disease: a debatable hypothesis. J Neurochem 129(4): 559-72. (2014)
[http://dx.doi.org/10.1111/jnc.12637] [PMID: 24329875]
[61]
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, et al. Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration. Synapse 71(10)e21990 (2017)
[http://dx.doi.org/10.1002/syn.21990] [PMID: 28650104]
[62]
Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66(3): 300-5. (2009)
[http://dx.doi.org/10.1001/archneurol.2009.27] [PMID: 19273747]
[63]
An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14(3): 318-29. (2018)
[http://dx.doi.org/10.1016/j.jalz.2017.09.011] [PMID: 29055815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy